6,557 research outputs found

    Bidirected minimum Manhattan network problem

    Full text link
    In the bidirected minimum Manhattan network problem, given a set T of n terminals in the plane, we need to construct a network N(T) of minimum total length with the property that the edges of N(T) are axis-parallel and oriented in a such a way that every ordered pair of terminals is connected in N(T) by a directed Manhattan path. In this paper, we present a polynomial factor 2 approximation algorithm for the bidirected minimum Manhattan network problem.Comment: 14 pages, 16 figure

    Quantifying the benefits of vehicle pooling with shareability networks

    Get PDF
    Taxi services are a vital part of urban transportation, and a considerable contributor to traffic congestion and air pollution causing substantial adverse effects on human health. Sharing taxi trips is a possible way of reducing the negative impact of taxi services on cities, but this comes at the expense of passenger discomfort quantifiable in terms of a longer travel time. Due to computational challenges, taxi sharing has traditionally been approached on small scales, such as within airport perimeters, or with dynamical ad-hoc heuristics. However, a mathematical framework for the systematic understanding of the tradeoff between collective benefits of sharing and individual passenger discomfort is lacking. Here we introduce the notion of shareability network which allows us to model the collective benefits of sharing as a function of passenger inconvenience, and to efficiently compute optimal sharing strategies on massive datasets. We apply this framework to a dataset of millions of taxi trips taken in New York City, showing that with increasing but still relatively low passenger discomfort, cumulative trip length can be cut by 40% or more. This benefit comes with reductions in service cost, emissions, and with split fares, hinting towards a wide passenger acceptance of such a shared service. Simulation of a realistic online system demonstrates the feasibility of a shareable taxi service in New York City. Shareability as a function of trip density saturates fast, suggesting effectiveness of the taxi sharing system also in cities with much sparser taxi fleets or when willingness to share is low.Comment: Main text: 6 pages, 3 figures, SI: 24 page

    Searching for Realizations of Finite Metric Spaces in Tight Spans

    Full text link
    An important problem that commonly arises in areas such as internet traffic-flow analysis, phylogenetics and electrical circuit design, is to find a representation of any given metric DD on a finite set by an edge-weighted graph, such that the total edge length of the graph is minimum over all such graphs. Such a graph is called an optimal realization and finding such realizations is known to be NP-hard. Recently Varone presented a heuristic greedy algorithm for computing optimal realizations. Here we present an alternative heuristic that exploits the relationship between realizations of the metric DD and its so-called tight span TDT_D. The tight span TDT_D is a canonical polytopal complex that can be associated to DD, and our approach explores parts of TDT_D for realizations in a way that is similar to the classical simplex algorithm. We also provide computational results illustrating the performance of our approach for different types of metrics, including l1l_1-distances and two-decomposable metrics for which it is provably possible to find optimal realizations in their tight spans.Comment: 20 pages, 3 figure

    Solving a "Hard" Problem to Approximate an "Easy" One: Heuristics for Maximum Matchings and Maximum Traveling Salesman Problems

    Get PDF
    We consider geometric instances of the Maximum Weighted Matching Problem (MWMP) and the Maximum Traveling Salesman Problem (MTSP) with up to 3,000,000 vertices. Making use of a geometric duality relationship between MWMP, MTSP, and the Fermat-Weber-Problem (FWP), we develop a heuristic approach that yields in near-linear time solutions as well as upper bounds. Using various computational tools, we get solutions within considerably less than 1% of the optimum. An interesting feature of our approach is that, even though an FWP is hard to compute in theory and Edmonds' algorithm for maximum weighted matching yields a polynomial solution for the MWMP, the practical behavior is just the opposite, and we can solve the FWP with high accuracy in order to find a good heuristic solution for the MWMP.Comment: 20 pages, 14 figures, Latex, to appear in Journal of Experimental Algorithms, 200

    Fixed-Parameter Algorithms for Rectilinear Steiner tree and Rectilinear Traveling Salesman Problem in the plane

    Full text link
    Given a set PP of nn points with their pairwise distances, the traveling salesman problem (TSP) asks for a shortest tour that visits each point exactly once. A TSP instance is rectilinear when the points lie in the plane and the distance considered between two points is the l1l_1 distance. In this paper, a fixed-parameter algorithm for the Rectilinear TSP is presented and relies on techniques for solving TSP on bounded-treewidth graphs. It proves that the problem can be solved in O(nh7h)O\left(nh7^h\right) where hnh \leq n denotes the number of horizontal lines containing the points of PP. The same technique can be directly applied to the problem of finding a shortest rectilinear Steiner tree that interconnects the points of PP providing a O(nh5h)O\left(nh5^h\right) time complexity. Both bounds improve over the best time bounds known for these problems.Comment: 24 pages, 13 figures, 6 table

    Integer Point Sets Minimizing Average Pairwise L1-Distance: What is the Optimal Shape of a Town?

    Get PDF
    An n-town, for a natural number n, is a group of n buildings, each occupying a distinct position on a 2-dimensional integer grid. If we measure the distance between two buildings along the axis-parallel street grid, then an n-town has optimal shape if the sum of all pairwise Manhattan distances is minimized. This problem has been studied for cities, i.e., the limiting case of very large n. For cities, it is known that the optimal shape can be described by a differential equation, for which no closed-form is known. We show that optimal n-towns can be computed in O(n^7.5) time. This is also practically useful, as it allows us to compute optimal solutions up to n=80.Comment: 26 pages, 6 figures, to appear in Computational Geometry: Theory and Application
    corecore