853 research outputs found

    A fast, simple, and stable Chebyshev-Legendre transform using an asymptotic formula

    Get PDF
    A fast, simple, and numerically stable transform for converting between Legendre and Chebyshev coefficients of a degree NN polynomial in O(N(logN)2/loglogN)O(N(\log N)^{2}/ \log \log N) operations is derived. The basis of the algorithm is to rewrite a well-known asymptotic formula for Legendre polynomials of large degree as a weighted linear combination of Chebyshev polynomials, which can then be evaluated by using the discrete cosine transform. Numerical results are provided to demonstrate the efficiency and numerical stability. Since the algorithm evaluates a Legendre expansion at an N+1N+1 Chebyshev grid as an intermediate step, it also provides a fast transform between Legendre coefficients and values on a Chebyshev grid

    A fast analysis-based discrete Hankel transform using asymptotic expansions

    Full text link
    A fast and numerically stable algorithm is described for computing the discrete Hankel transform of order 00 as well as evaluating Schl\"{o}milch and Fourier--Bessel expansions in O(N(logN)2/log ⁣logN)\mathcal{O}(N(\log N)^2/\log\!\log N) operations. The algorithm is based on an asymptotic expansion for Bessel functions of large arguments, the fast Fourier transform, and the Neumann addition formula. All the algorithmic parameters are selected from error bounds to achieve a near-optimal computational cost for any accuracy goal. Numerical results demonstrate the efficiency of the resulting algorithm.Comment: 22 page
    corecore