5 research outputs found

    Building interactive distributed processing applications at a global scale

    Get PDF
    Along with the continuous engagement with technology, many latency-sensitive interactive applications have emerged, e.g., global content sharing in social networks, adaptive lights/temperatures in smart buildings, and online multi-user games. These applications typically process a massive amount of data at a global scale. In this cases, distributing storage and processing is key to handling the large scale. Distribution necessitates handling two main aspects: a) the placement of data/processing and b) the data motion across the distributed locations. However, handling the distribution while meeting latency guarantees at large scale comes with many challenges around hiding heterogeneity and diversity of devices and workload, handling dynamism in the environment, providing continuous availability despite failures, and supporting persistent large state. In this thesis, we show how latency-driven designs for placement and data-motion can be used to build production infrastructures for interactive applications at a global scale, while also being able to address myriad challenges on heterogeneity, dynamism, state, and availability. We demonstrate a latency-driven approach is general and applicable at all layers of the stack: from storage, to processing, down to networking. We designed and built four distinct systems across the spectrum. We have developed Ambry (collaboration with LinkedIn), a geo-distributed storage system for interactive data sharing across the globe. Ambry is LinkedIn's mainstream production system for all its media content running across 4 datacenters and over 500 million users. Ambry minimizes user perceived latency via smart data placement and propagation. Second, we have built two processing systems, a traditional model, Samza, and the avant-garde model, Steel. Samza (collaboration with LinkedIn) is a production stream processing framework used at 15 companies (including LinkedIn, Uber, Netflix, and TripAdvisor), powering >200 pipelines at LinkedIn alone. Samza minimizes the impact of data motion on the end-to-end latency, thus, enabling large persistent state (100s of TB) along with processing. Steel (collaboration with Microsoft) extends processing to the emerging edge. Integrated with Azure, Steel dynamically optimizes placement and data-motion across the entire edge-cloud environment. Finally, we have designed FreeFlow, a high performance networking mechanisms for containers. Using the container placement, FreeFlow opportunistically bypasses networking layers, minimizing data motion and reducing latency (up to 3 orders of magnitude)

    Proceedings of the Second International Workshop on Sustainable Ultrascale Computing Systems (NESUS 2015) Krakow, Poland

    Get PDF
    Proceedings of: Second International Workshop on Sustainable Ultrascale Computing Systems (NESUS 2015). Krakow (Poland), September 10-11, 2015

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen

    L'AIS : une donnée pour l'analyse des activités en mer

    Get PDF
    4 pages, session "Mer et littoral"International audienceCette contribution présente des éléments méthodologiques pour la description des activités humaines en mer dans une perspective d'aide à la gestion. Différentes procédures, combinant l'exploitation de bases de données spatio-temporelles issue de données AIS archivées à des analyses spatiales au sein d'un SIG, sont testées afin de caractériser le transport maritime en Mer d'Iroise (Bretagne, France) sur les plans spatiaux, temporels et quantitatifs au cours d'une année
    corecore