21 research outputs found

    Méthodes numériques et statistiques pour l'analyse de trajectoire dans un cadre de geométrie Riemannienne.

    Get PDF
    This PhD proposes new Riemannian geometry tools for the analysis of longitudinal observations of neuro-degenerative subjects. First, we propose a numerical scheme to compute the parallel transport along geodesics. This scheme is efficient as long as the co-metric can be computed efficiently. Then, we tackle the issue of Riemannian manifold learning. We provide some minimal theoretical sanity checks to illustrate that the procedure of Riemannian metric estimation can be relevant. Then, we propose to learn a Riemannian manifold so as to model subject's progressions as geodesics on this manifold. This allows fast inference, extrapolation and classification of the subjects.Cette thèse porte sur l'élaboration d'outils de géométrie riemannienne et de leur application en vue de la modélisation longitudinale de sujets atteints de maladies neuro-dégénératives. Dans une première partie, nous prouvons la convergence d'un schéma numérique pour le transport parallèle. Ce schéma reste efficace tant que l'inverse de la métrique peut être calculé rapidement. Dans une deuxième partie, nous proposons l'apprentissage une variété et une métrique riemannienne. Après quelques résultats théoriques encourageants, nous proposons d'optimiser la modélisation de progression de sujets comme des géodésiques sur cette variété

    Parallel transport, a central tool in geometric statistics for computational anatomy: Application to cardiac motion modeling

    Get PDF
    International audienceTransporting the statistical knowledge regressed in the neighbourhood of a point to a different but related place (transfer learning) is important for many applications. In medical imaging, cardiac motion modelling and structural brain changes are two such examples: for a group-wise statistical analysis, subjectspecific longitudinal deformations need to be transported in a common template anatomy. In geometric statistics, the natural (parallel) transport method is defined by the integration of a Riemannian connection which specifies how tangent vectors are compared at neighbouring points. In this process, the numerical accuracy of the transport method is critical. Discrete methods based on iterated geodesic parallelograms inspired by Schild’s ladder were shown to be very efficient and apparently stable in practice. In this chapter, we show that ladder methods are actually second order schemes, even with numerically approximated geodesics. We also propose a new original algorithm to implement these methods in the context of the Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework that endows the space of diffeomorphisms with a right-invariant RKHS metric. When applied to the motion modelling of the cardiac right ventricle under pressure or volume overload, the method however exhibits unexpected effects in the presence of very large volume differences between subjects. We first investigate an intuitive rescaling of the modulus after parallel transport to preserve the ejection fraction. The surprisingly simple scaling/volume relationship that we obtain suggests to decouples the volume change from the deformation directly within the LDMMM metric. The parallel transport of cardiac trajectories with this new metric now reveals statistical insights into the dynamics of each disease. This example shows that parallel transport could become a tool of choice for data-driven metric optimization

    Numerical Accuracy of Ladder Schemes for Parallel Transport on Manifolds

    Get PDF
    International audienceParallel transport is a fundamental tool to perform statistics on Riemannian manifolds. Since closed formulae do not exist in general, practitioners often have to resort to numerical schemes. Ladder methods are a popular class of algorithms that rely on iterative constructions of geodesic parallelograms. And yet, the literature lacks a clear analysis of their convergence performance. In this work, we give Taylor approximations of the elementary constructions of Schild’s ladder and the pole ladder with respect to the Riemann curvature of the underlying space. We then prove that these methods can be iterated to converge with quadratic speed, even when geodesics are approximated by numerical schemes.We also contribute a new link between Schild’s ladder and the Fanning scheme which explains why the latter naturally converges only linearly. The extra computational cost of ladder methods is thus easily compensated by a drastic reduction of the number of steps needed to achieve the requested accuracy. Illustrations on the 2-sphere, the space of symmetric positive definite matrices and the special Euclidean group show that the theoretical errors we have established are measured with a high accuracy in practice. The special Euclidean group with an anisotropic left-invariant metric is of particular interest as it is a tractable example of a non-symmetric space in general, which reduces to a Riemannian symmetric space in a particular case. As a secondary contribution, we compute the covariant derivative of the curvature in this space

    Geodesic analysis in Kendall’s shape space with epidemiological applications

    Get PDF
    We analytically determine Jacobi fields and parallel transports and compute geodesic regression in Kendall’s shape space. Using the derived expressions, we can fully leverage the geometry via Riemannian optimization and thereby reduce the computational expense by several orders of magnitude over common, nonlinear constrained approaches. The methodology is demonstrated by performing a longitudinal statistical analysis of epidemiological shape data. As an example application, we have chosen 3D shapes of knee bones, reconstructed from image data of the Osteoarthritis Initiative. Comparing subject groups with incident and developing osteoarthritis versus normal controls, we find clear differences in the temporal development of femur shapes. This paves the way for early prediction of incident knee osteoarthritis, using geometry data alone

    Learning distributions of shape trajectories from longitudinal datasets: a hierarchical model on a manifold of diffeomorphisms

    Get PDF
    We propose a method to learn a distribution of shape trajectories from longitudinal data, i.e. the collection of individual objects repeatedly observed at multiple time-points. The method allows to compute an average spatiotemporal trajectory of shape changes at the group level, and the individual variations of this trajectory both in terms of geometry and time dynamics. First, we formulate a non-linear mixed-effects statistical model as the combination of a generic statistical model for manifold-valued longitudinal data, a deformation model defining shape trajectories via the action of a finite-dimensional set of diffeomorphisms with a manifold structure, and an efficient numerical scheme to compute parallel transport on this manifold. Second, we introduce a MCMC-SAEM algorithm with a specific approach to shape sampling, an adaptive scheme for proposal variances, and a log-likelihood tempering strategy to estimate our model. Third, we validate our algorithm on 2D simulated data, and then estimate a scenario of alteration of the shape of the hippocampus 3D brain structure during the course of Alzheimer's disease. The method shows for instance that hippocampal atrophy progresses more quickly in female subjects, and occurs earlier in APOE4 mutation carriers. We finally illustrate the potential of our method for classifying pathological trajectories versus normal ageing

    Learning the clustering of longitudinal shape data sets into a mixture of independent or branching trajectories

    Get PDF
    Given repeated observations of several subjects over time, i.e. a longitudinal data set, this paper introduces a new model to learn a classification of the shapes progression in an unsupervised setting: we automatically cluster a longitudinal data set in different classes without labels. Our method learns for each cluster an average shape trajectory (or representative curve) and its variance in space and time. Representative trajectories are built as the combination of pieces of curves. This mixture model is flexible enough to handle independent trajectories for each cluster as well as fork and merge scenarios. The estimation of such non linear mixture models in high dimension is known to be difficult because of the trapping states effect that hampers the optimisation of cluster assignments during training. We address this issue by using a tempered version of the stochastic EM algorithm. Finally, we apply our algorithm on different data sets. First, synthetic data are used to show that a tempered scheme achieves better convergence. We then apply our method to different real data sets: 1D RECIST score used to monitor tumors growth, 3D facial expressions and meshes of the hippocampus. In particular, we show how the method can be used to test different scenarios of hip-pocampus atrophy in ageing by using an heteregenous population of normal ageing individuals and mild cog-nitive impaired subjects

    Geometric Data Analysis: Advancements of the Statistical Methodology and Applications

    Get PDF
    Data analysis has become fundamental to our society and comes in multiple facets and approaches. Nevertheless, in research and applications, the focus was primarily on data from Euclidean vector spaces. Consequently, the majority of methods that are applied today are not suited for more general data types. Driven by needs from fields like image processing, (medical) shape analysis, and network analysis, more and more attention has recently been given to data from non-Euclidean spaces–particularly (curved) manifolds. It has led to the field of geometric data analysis whose methods explicitly take the structure (for example, the topology and geometry) of the underlying space into account. This thesis contributes to the methodology of geometric data analysis by generalizing several fundamental notions from multivariate statistics to manifolds. We thereby focus on two different viewpoints. First, we use Riemannian structures to derive a novel regression scheme for general manifolds that relies on splines of generalized Bézier curves. It can accurately model non-geodesic relationships, for example, time-dependent trends with saturation effects or cyclic trends. Since Bézier curves can be evaluated with the constructive de Casteljau algorithm, working with data from manifolds of high dimensions (for example, a hundred thousand or more) is feasible. Relying on the regression, we further develop a hierarchical statistical model for an adequate analysis of longitudinal data in manifolds, and a method to control for confounding variables. We secondly focus on data that is not only manifold- but even Lie group-valued, which is frequently the case in applications. We can only achieve this by endowing the group with an affine connection structure that is generally not Riemannian. Utilizing it, we derive generalizations of several well-known dissimilarity measures between data distributions that can be used for various tasks, including hypothesis testing. Invariance under data translations is proven, and a connection to continuous distributions is given for one measure. A further central contribution of this thesis is that it shows use cases for all notions in real-world applications, particularly in problems from shape analysis in medical imaging and archaeology. We can replicate or further quantify several known findings for shape changes of the femur and the right hippocampus under osteoarthritis and Alzheimer's, respectively. Furthermore, in an archaeological application, we obtain new insights into the construction principles of ancient sundials. Last but not least, we use the geometric structure underlying human brain connectomes to predict cognitive scores. Utilizing a sample selection procedure, we obtain state-of-the-art results

    Riemannian metric learning for progression modeling of longitudinal datasets

    Get PDF
    International audienceExplicit descriptions of the progression of biomarkers across time usually involve priors on the shapes of the trajectories. To circumvent this limitation, we propose a geometric framework to learn a manifold representation of longitudinal data. Namely, we introduce a family of Riemannian metrics that span a set of curves defined as parallel variations around a main geodesic, and apply that framework to disease progression modeling with a mixed-effects model, where the main geodesic represents the average progression of biomarkers and parallel curves describe the individual trajectories. Learning the metric from the data allows to fit the model to longitudinal datasets and provides few interpretable parameters that characterize both the group-average trajectory and individual progression profiles. Our method outperforms the 56 methods benchmarked in the TADPOLE challenge for cognitive scores prediction
    corecore