7,986 research outputs found

    Dynkin operators and renormalization group actions in pQFT

    Get PDF
    Renormalization techniques in perturbative quantum field theory were known, from their inception, to have a strong combinatorial content emphasized, among others, by Zimmermann's celebrated forest formula. The present article reports on recent advances on the subject, featuring the role played by the Dynkin operators (actually their extension to the Hopf algebraic setting) at two crucial levels of renormalization, namely the Bogolioubov recursion and the renormalization group (RG) equations. For that purpose, an iterated integrals toy model is introduced to emphasize how the operators appear naturally in the setting of renormalization group analysis. The toy model, in spite of its simplicity, captures many key features of recent approaches to RG equations in pQFT, including the construction of a universal Galois group for quantum field theories

    Confluent Orthogonal Drawings of Syntax Diagrams

    Full text link
    We provide a pipeline for generating syntax diagrams (also called railroad diagrams) from context free grammars. Syntax diagrams are a graphical representation of a context free language, which we formalize abstractly as a set of mutually recursive nondeterministic finite automata and draw by combining elements from the confluent drawing, layered drawing, and smooth orthogonal drawing styles. Within our pipeline we introduce several heuristics that modify the grammar but preserve the language, improving the aesthetics of the final drawing.Comment: GD 201

    The diamond rule for multi-loop Feynman diagrams

    Full text link
    An important aspect of improving perturbative predictions in high energy physics is efficiently reducing dimensionally regularised Feynman integrals through integration by parts (IBP) relations. The well-known triangle rule has been used to achieve simple reduction schemes. In this work we introduce an extensible, multi-loop version of the triangle rule, which we refer to as the diamond rule. Such a structure appears frequently in higher-loop calculations. We derive an explicit solution for the recursion, which prevents spurious poles in intermediate steps of the computations. Applications for massless propagator type diagrams at three, four, and five loops are discussed

    Exact results for an asymmetric annihilation process with open boundaries

    Full text link
    We consider a nonequilibrium reaction-diffusion model on a finite one dimensional lattice with bulk and boundary dynamics inspired by Glauber dynamics of the Ising model. We show that the model has a rich algebraic structure that we use to calculate its properties. In particular, we show that the Markov dynamics for a system of a given size can be embedded in the dynamics of systems of higher sizes. This remark leads us to devise a technique we call the transfer matrix Ansatz that allows us to determine the steady state distribution and correlation functions. Furthermore, we show that the disorder variables satisfy very simple properties and we give a conjecture for the characteristic polynomial of Markov matrices. Lastly, we compare the transfer matrix Ansatz used here with the matrix product representation of the steady state of one-dimensional stochastic models.Comment: 18 page

    On the Relative Strength of Pebbling and Resolution

    Full text link
    The last decade has seen a revival of interest in pebble games in the context of proof complexity. Pebbling has proven a useful tool for studying resolution-based proof systems when comparing the strength of different subsystems, showing bounds on proof space, and establishing size-space trade-offs. The typical approach has been to encode the pebble game played on a graph as a CNF formula and then argue that proofs of this formula must inherit (various aspects of) the pebbling properties of the underlying graph. Unfortunately, the reductions used here are not tight. To simulate resolution proofs by pebblings, the full strength of nondeterministic black-white pebbling is needed, whereas resolution is only known to be able to simulate deterministic black pebbling. To obtain strong results, one therefore needs to find specific graph families which either have essentially the same properties for black and black-white pebbling (not at all true in general) or which admit simulations of black-white pebblings in resolution. This paper contributes to both these approaches. First, we design a restricted form of black-white pebbling that can be simulated in resolution and show that there are graph families for which such restricted pebblings can be asymptotically better than black pebblings. This proves that, perhaps somewhat unexpectedly, resolution can strictly beat black-only pebbling, and in particular that the space lower bounds on pebbling formulas in [Ben-Sasson and Nordstrom 2008] are tight. Second, we present a versatile parametrized graph family with essentially the same properties for black and black-white pebbling, which gives sharp simultaneous trade-offs for black and black-white pebbling for various parameter settings. Both of our contributions have been instrumental in obtaining the time-space trade-off results for resolution-based proof systems in [Ben-Sasson and Nordstrom 2009].Comment: Full-length version of paper to appear in Proceedings of the 25th Annual IEEE Conference on Computational Complexity (CCC '10), June 201

    Data-Oblivious Stream Productivity

    Full text link
    We are concerned with demonstrating productivity of specifications of infinite streams of data, based on orthogonal rewrite rules. In general, this property is undecidable, but for restricted formats computable sufficient conditions can be obtained. The usual analysis disregards the identity of data, thus leading to approaches that we call data-oblivious. We present a method that is provably optimal among all such data-oblivious approaches. This means that in order to improve on the algorithm in this paper one has to proceed in a data-aware fashion
    corecore