29 research outputs found

    State-of-the-art assessment of 5G mmWave communications

    Get PDF
    Deliverable D2.1 del proyecto 5GWirelessMain objective of the European 5Gwireless project, which is part of the H2020 Marie Slodowska- Curie ITN (Innovative Training Networks) program resides in the training and involvement of young researchers in the elaboration of future mobile communication networks, focusing on innovative wireless technologies, heterogeneous network architectures, new topologies (including ultra-dense deployments), and appropriate tools. The present Document D2.1 is the first deliverable of Work- Package 2 (WP2) that is specifically devoted to the modeling of the millimeter-wave (mmWave) propagation channels, and development of appropriate mmWave beamforming and signal processing techniques. Deliver D2.1 gives a state-of-the-art on the mmWave channel measurement, characterization and modeling; existing antenna array technologies, channel estimation and precoding algorithms; proposed deployment and networking techniques; some performance studies; as well as a review on the evaluation and analysis toolsPostprint (published version

    Enabling Efficient Communications Over Millimeter Wave Massive MIMO Channels Using Hybrid Beamforming

    Get PDF
    The use of massive multiple-input multiple-output (MIMO) over millimeter wave (mmWave) channels is the new frontier for fulfilling the exigent requirements of next-generation wireless systems and solving the wireless network impending crunch. Massive MIMO systems and mmWave channels offer larger numbers of antennas, higher carrier frequencies, and wider signaling bandwidths. Unleashing the full potentials of these tremendous degrees of freedom (dimensions) hinges on the practical deployment of those technologies. Hybrid analog and digital beamforming is considered as a stepping-stone to the practical deployment of mmWave massive MIMO systems since it significantly reduces their operating and implementation costs, energy consumption, and system design complexity. The prevalence of adopting mmWave and massive MIMO technologies in next-generation wireless systems necessitates developing agile and cost-efficient hybrid beamforming solutions that match the various use-cases of these systems. In this thesis, we propose hybrid precoding and combining solutions that are tailored to the needs of these specific cases and account for the main limitations of hybrid processing. The proposed solutions leverage the sparsity and spatial correlation of mmWave massive MIMO channels to reduce the feedback overhead and computational complexity of hybrid processing. Real-time use-cases of next-generation wireless communication, including connected cars, virtual-reality/augmented-reality, and high definition video transmission, require high-capacity and low-latency wireless transmission. On the physical layer level, this entails adopting near capacity-achieving transmission schemes with very low computational delay. Motivated by this, we propose low-complexity hybrid precoding and combining schemes for massive MIMO systems with partially and fully-connected antenna array structures. Leveraging the disparity in the dimensionality of the analog and the digital processing matrices, we develop a two-stage channel diagonalization design approach in order to reduce the computational complexity of the hybrid precoding and combining while maintaining high spectral efficiency. Particularly, the analog processing stage is designed to maximize the antenna array gain in order to avoid performing computationally intensive operations such as matrix inversion and singular value decomposition in high dimensions. On the other hand, the low-dimensional digital processing stage is designed to maximize the spectral efficiency of the systems. Computational complexity analysis shows that the proposed schemes offer significant savings compared to prior works where asymptotic computational complexity reductions ranging between 80%80\% and 98%98\%. Simulation results validate that the spectral efficiency of the proposed schemes is near-optimal where in certain scenarios the signal-to-noise-ratio (SNR) gap to the optimal fully-digital spectral efficiency is less than 11 dB. On the other hand, integrating mmWave and massive MIMO into the cellular use-cases requires adopting hybrid beamforming schemes that utilize limited channel state information at the transmitter (CSIT) in order to adapt the transmitted signals to the current channel. This is so mainly because obtaining perfect CSIT in frequency division duplexing (FDD) architecture, which dominates the cellular systems, poses serious concerns due to its large training and excessive feedback overhead. Motivated by this, we develop low-overhead hybrid precoding algorithms for selecting the baseband digital and radio frequency (RF) analog precoders from statistically skewed DFT-based codebooks. The proposed algorithms aim at maximizing the spectral efficiency based on minimizing the chordal distance between the optimal unconstrained precoder and the hybrid beamformer and maximizing the signal to interference noise ratio for the single-user and multi-user cases, respectively. Mathematical analysis shows that the proposed algorithms are asymptotically optimal as the number of transmit antennas goes to infinity and the mmWave channel has a limited number of paths. Moreover, it shows that the performance gap between the lower and upper bounds depends heavily on how many DFT columns are aligned to the largest eigenvectors of the transmit antenna array response of the mmWave channel or equivalently the transmit channel covariance matrix when only the statistical channel knowledge is available at the transmitter. Further, we verify the performance of the proposed algorithms numerically where the obtained results illustrate that the spectral efficiency of the proposed algorithms can approach that of the optimal precoder in certain scenarios. Furthermore, these results illustrate that the proposed hybrid precoding schemes have superior spectral efficiency performance while requiring lower (or at most comparable) channel feedback overhead in comparison with the prior art

    Novel transmission and beamforming strategies for multiuser MIMO with various CSIT types

    Get PDF
    In multiuser multi-antenna wireless systems, the transmission and beamforming strategies that achieve the sum rate capacity depend critically on the acquisition of perfect Channel State Information at the Transmitter (CSIT). Accordingly, a high-rate low-latency feedback link between the receiver and the transmitter is required to keep the latter accurately and instantaneously informed about the CSI. In realistic wireless systems, however, only imperfect CSIT is achievable due to pilot contamination, estimation error, limited feedback and delay, etc. As an intermediate solution, this thesis investigates novel transmission strategies suitable for various imperfect CSIT scenarios and the associated beamforming techniques to optimise the rate performance. First, we consider a two-user Multiple-Input-Single-Output (MISO) Broadcast Channel (BC) under statistical and delayed CSIT. We mainly focus on linear beamforming and power allocation designs for ergodic sum rate maximisation. The proposed designs enable higher sum rate than the conventional designs. Interestingly, we propose a novel transmission framework which makes better use of statistical and delayed CSIT and smoothly bridges between statistical CSIT-based strategies and delayed CSIT-based strategies. Second, we consider a multiuser massive MIMO system under partial and statistical CSIT. In order to tackle multiuser interference incurred by partial CSIT, a Rate-Splitting (RS) transmission strategy has been proposed recently. We generalise the idea of RS into the large-scale array. By further exploiting statistical CSIT, we propose a novel framework Hierarchical-Rate-Splitting that is particularly suited to massive MIMO systems. Third, we consider a multiuser Millimetre Wave (mmWave) system with hybrid analog/digital precoding under statistical and quantised CSIT. We leverage statistical CSIT to design digital precoder for interference mitigation while all feedback overhead is reserved for precise analog beamforming. For very limited feedback and/or very sparse channels, the proposed precoding scheme yields higher sum rate than the conventional precoding schemes under a fixed total feedback constraint. Moreover, a RS transmission strategy is introduced to further tackle the multiuser interference, enabling remarkable saving in feedback overhead compared with conventional transmission strategies. Finally, we investigate the downlink hybrid precoding for physical layer multicasting with a limited number of RF chains. We propose a low complexity algorithm to compute the analog precoder that achieves near-optimal max-min performance. Moreover, we derive a simple condition under which the hybrid precoding driven by a limited number of RF chains incurs no loss of optimality with respect to the fully digital precoding case.Open Acces

    Ondas milimétricas e MIMO massivo para otimização da capacidade e cobertura de redes heterogeneas de 5G

    Get PDF
    Today's Long Term Evolution Advanced (LTE-A) networks cannot support the exponential growth in mobile traffic forecast for the next decade. By 2020, according to Ericsson, 6 billion mobile subscribers worldwide are projected to generate 46 exabytes of mobile data traffic monthly from 24 billion connected devices, smartphones and short-range Internet of Things (IoT) devices being the key prosumers. In response, 5G networks are foreseen to markedly outperform legacy 4G systems. Triggered by the International Telecommunication Union (ITU) under the IMT-2020 network initiative, 5G will support three broad categories of use cases: enhanced mobile broadband (eMBB) for multi-Gbps data rate applications; ultra-reliable and low latency communications (URLLC) for critical scenarios; and massive machine type communications (mMTC) for massive connectivity. Among the several technology enablers being explored for 5G, millimeter-wave (mmWave) communication, massive MIMO antenna arrays and ultra-dense small cell networks (UDNs) feature as the dominant technologies. These technologies in synergy are anticipated to provide the 1000_ capacity increase for 5G networks (relative to 4G) through the combined impact of large additional bandwidth, spectral efficiency (SE) enhancement and high frequency reuse, respectively. However, although these technologies can pave the way towards gigabit wireless, there are still several challenges to solve in terms of how we can fully harness the available bandwidth efficiently through appropriate beamforming and channel modeling approaches. In this thesis, we investigate the system performance enhancements realizable with mmWave massive MIMO in 5G UDN and cellular infrastructure-to-everything (C-I2X) application scenarios involving pedestrian and vehicular users. As a critical component of the system-level simulation approach adopted in this thesis, we implemented 3D channel models for the accurate characterization of the wireless channels in these scenarios and for realistic performance evaluation. To address the hardware cost, complexity and power consumption of the massive MIMO architectures, we propose a novel generalized framework for hybrid beamforming (HBF) array structures. The generalized model reveals the opportunities that can be harnessed with the overlapped subarray structures for a balanced trade-o_ between SE and energy efficiently (EE) of 5G networks. The key results in this investigation show that mmWave massive MIMO can deliver multi-Gbps rates for 5G whilst maintaining energy-efficient operation of the network.As redes LTE-A atuais não são capazes de suportar o crescimento exponencial de tráfego que está previsto para a próxima década. De acordo com a previsão da Ericsson, espera-se que em 2020, a nível global, 6 mil milhões de subscritores venham a gerar mensalmente 46 exa bytes de tráfego de dados a partir de 24 mil milhões de dispositivos ligados à rede móvel, sendo os telefones inteligentes e dispositivos IoT de curto alcance os principais responsáveis por tal nível de tráfego. Em resposta a esta exigência, espera-se que as redes de 5a geração (5G) tenham um desempenho substancialmente superior às redes de 4a geração (4G) atuais. Desencadeado pelo UIT (União Internacional das Telecomunicações) no âmbito da iniciativa IMT-2020, o 5G irá suportar três grandes tipos de utilizações: banda larga móvel capaz de suportar aplicações com débitos na ordem de vários Gbps; comunicações de baixa latência e alta fiabilidade indispensáveis em cenários de emergência; comunicações massivas máquina-a-máquina para conectividade generalizada. Entre as várias tecnologias capacitadoras que estão a ser exploradas pelo 5G, as comunicações através de ondas milimétricas, os agregados MIMO massivo e as redes celulares ultradensas (RUD) apresentam-se como sendo as tecnologias fundamentais. Antecipa-se que o conjunto destas tecnologias venha a fornecer às redes 5G um aumento de capacidade de 1000x através da utilização de maiores larguras de banda, melhoria da eficiência espectral, e elevada reutilização de frequências respetivamente. Embora estas tecnologias possam abrir caminho para as redes sem fios com débitos na ordem dos gigabits, existem ainda vários desafios que têm que ser resolvidos para que seja possível aproveitar totalmente a largura de banda disponível de maneira eficiente utilizando abordagens de formatação de feixe e de modelação de canal adequadas. Nesta tese investigamos a melhoria de desempenho do sistema conseguida através da utilização de ondas milimétricas e agregados MIMO massivo em cenários de redes celulares ultradensas de 5a geração e em cenários 'infraestrutura celular-para-qualquer coisa' (do inglês: cellular infrastructure-to-everything) envolvendo utilizadores pedestres e veiculares. Como um componente fundamental das simulações de sistema utilizadas nesta tese é o canal de propagação, implementamos modelos de canal tridimensional (3D) para caracterizar de forma precisa o canal de propagação nestes cenários e assim conseguir uma avaliação de desempenho mais condizente com a realidade. Para resolver os problemas associados ao custo do equipamento, complexidade e consumo de energia das arquiteturas MIMO massivo, propomos um modelo inovador de agregados com formatação de feixe híbrida. Este modelo genérico revela as oportunidades que podem ser aproveitadas através da sobreposição de sub-agregados no sentido de obter um compromisso equilibrado entre eficiência espectral (ES) e eficiência energética (EE) nas redes 5G. Os principais resultados desta investigação mostram que a utilização conjunta de ondas milimétricas e de agregados MIMO massivo possibilita a obtenção, em simultâneo, de taxas de transmissão na ordem de vários Gbps e a operação de rede de forma energeticamente eficiente.Programa Doutoral em Telecomunicaçõe

    Memory-assisted Statistically-ranked RF Beam Training Algorithm for Sparse MIMO

    Full text link
    This paper presents a novel radio frequency (RF) beam training algorithm for sparse multiple input multiple output (MIMO) channels using unitary RF beamforming codebooks at transmitter (Tx) and receiver (Rx). The algorithm leverages statistical knowledge from past beam data for expedited beam search with statistically-minimal training overheads. Beams are tested in the order of their ranks based on their probabilities for providing a communication link. For low beam entropy scenarios, statistically-ranked beam search performs excellent in reducing the average number of beam tests per Tx-Rx beam pair identification for a communication link. For high beam entropy cases, a hybrid algorithm involving both memory-assisted statistically-ranked (MarS) beam search and multi-level (ML) beam search is also proposed. Savings in training overheads increase with decrease in beam entropy and increase in MIMO channel dimensions.Comment: Under peer-review for IEEE Globecom 201

    INTERFERENCE MANAGEMENT IN LTE SYSTEM AND BEYOUND

    Get PDF
    The key challenges to high throughput in cellular wireless communication system are interference, mobility and bandwidth limitation. Mobility has never been a problem until recently, bandwidth has been constantly improved upon through the evolutions in cellular wireless communication system but interference has been a constant limitation to any improvement that may have resulted from such evolution. The fundamental challenge to a system designer or a researcher is how to achieve high data rate in motion (high speed) in a cellular system that is intrinsically interference-limited. Multi-antenna is the solution to data on the move and the capacity of multi-antenna system has been demonstrated to increase proportionally with increase in the number of antennas at both transmitter and receiver for point-to-point communications and multi-user environment. However, the capacity gain in both uplink and downlink is limited in a multi-user environment like cellular system by interference, the number of antennas at the base station, complexity and space constraint particularly for a mobile terminal. This challenge in the downlink provided the motivation to investigate successive interference cancellation (SIC) as an interference management tool LTE system and beyond. The Simulation revealed that ordered successive interference (OSIC) out performs non-ordered successive interference cancellation (NSIC) and the additional complexity is justified based on the associated gain in BER performance of OSIC. The major drawback of OSIC is that it is not efficient in network environment employing power control or power allocation. Additional interference management techniques will be required to fully manage the interference.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format
    corecore