5,870 research outputs found

    Encounter gossip: a high coverage broadcast protocol for MANET

    Get PDF
    PhD ThesisMobile Ad-hoc Networks (MANETs) allow deployment of mobile wireless devices or nodes in a range of environments without any fixed infrastructure and hence at a minimal setup cost. Broadcast support that assures a high coverage (i.e., a large fraction of nodes receiving a broadcast) is essential for hosting user applications, and is also non-trivial to achieve due to the nature of devices and mobility. We propose Encounter Gossip, a novel broadcast protocol, which holds minimal state and is unaware of network topology. Coverage obtained can be made arbitrarily close to 1 at a moderate cost of extra message tra c, even in partition-prone networks. Under certain simplifying assumptions, it is shown that a high coverage is achieved by making a total of O(n ln n) broadcasts, where n is the number of nodes, and the time to propagate a message is O(ln n). The e ect of various network parameters on the protocol performance is examined. We then propose modifications to minimise the number of redundant transmissions without compromising the achieved coverage. Two approaches are pursued: timer based and history based. The e ectiveness of each of these approaches is assessed through an extensive set of simulation experiments in the context of two mobility models. Specifically, we introduce a new heuristic alpha policy which achieves significant reduction in redundancy with negligible reduction in coverage. A generalisation to multiple broadcasts proceeding in parallel is proposed and the protocol is refined to reduce problems that can occur due to the effects of high mobility when transmitting a large number of messages. Finally, we implement and validate Encounter Gossip in the context of a real-life mobile ad-hoc network. All these investigations suggest that the protocol, together with the proposed modifications and re nements, is suited to MANETs of varying degrees of node densities and speeds

    Time-Varying Graphs and Dynamic Networks

    Full text link
    The past few years have seen intensive research efforts carried out in some apparently unrelated areas of dynamic systems -- delay-tolerant networks, opportunistic-mobility networks, social networks -- obtaining closely related insights. Indeed, the concepts discovered in these investigations can be viewed as parts of the same conceptual universe; and the formal models proposed so far to express some specific concepts are components of a larger formal description of this universe. The main contribution of this paper is to integrate the vast collection of concepts, formalisms, and results found in the literature into a unified framework, which we call TVG (for time-varying graphs). Using this framework, it is possible to express directly in the same formalism not only the concepts common to all those different areas, but also those specific to each. Based on this definitional work, employing both existing results and original observations, we present a hierarchical classification of TVGs; each class corresponds to a significant property examined in the distributed computing literature. We then examine how TVGs can be used to study the evolution of network properties, and propose different techniques, depending on whether the indicators for these properties are a-temporal (as in the majority of existing studies) or temporal. Finally, we briefly discuss the introduction of randomness in TVGs.Comment: A short version appeared in ADHOC-NOW'11. This version is to be published in Internation Journal of Parallel, Emergent and Distributed System

    Towards Opportunistic Data Dissemination in Mobile Phone Sensor Networks

    Get PDF
    Recently, there has been a growing interest within the research community in developing opportunistic routing protocols. Many schemes have been proposed; however, they differ greatly in assumptions and in type of network for which they are evaluated. As a result, researchers have an ambiguous understanding of how these schemes compare against each other in their specific applications. To investigate the performance of existing opportunistic routing algorithms in realistic scenarios, we propose a heterogeneous architecture including fixed infrastructure, mobile infrastructure, and mobile nodes. The proposed architecture focuses on how to utilize the available, low cost short-range radios of mobile phones for data gathering and dissemination. We also propose a new realistic mobility model and metrics. Existing opportunistic routing protocols are simulated and evaluated with the proposed heterogeneous architecture, mobility models, and transmission interfaces. Results show that some protocols suffer long time-to-live (TTL), while others suffer short TTL. We show that heterogeneous sensor network architectures need heterogeneous routing algorithms, such as a combination of Epidemic and Spray and Wait

    The Dynamics of Vehicular Networks in Urban Environments

    Full text link
    Vehicular Ad hoc NETworks (VANETs) have emerged as a platform to support intelligent inter-vehicle communication and improve traffic safety and performance. The road-constrained, high mobility of vehicles, their unbounded power source, and the emergence of roadside wireless infrastructures make VANETs a challenging research topic. A key to the development of protocols for inter-vehicle communication and services lies in the knowledge of the topological characteristics of the VANET communication graph. This paper explores the dynamics of VANETs in urban environments and investigates the impact of these findings in the design of VANET routing protocols. Using both real and realistic mobility traces, we study the networking shape of VANETs under different transmission and market penetration ranges. Given that a number of RSUs have to be deployed for disseminating information to vehicles in an urban area, we also study their impact on vehicular connectivity. Through extensive simulations we investigate the performance of VANET routing protocols by exploiting the knowledge of VANET graphs analysis.Comment: Revised our testbed with even more realistic mobility traces. Used the location of real Wi-Fi hotspots to simulate RSUs in our study. Used a larger, real mobility trace set, from taxis in Shanghai. Examine the implications of our findings in the design of VANET routing protocols by implementing in ns-3 two routing protocols (GPCR & VADD). Updated the bibliography section with new research work

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201
    corecore