172 research outputs found

    Applications of Coding Theory to Massive Multiple Access and Big Data Problems

    Get PDF
    The broad theme of this dissertation is design of schemes that admit iterative algorithms with low computational complexity to some new problems arising in massive multiple access and big data. Although bipartite Tanner graphs and low-complexity iterative algorithms such as peeling and message passing decoders are very popular in the channel coding literature they are not as widely used in the respective areas of study and this dissertation serves as an important step in that direction to bridge that gap. The contributions of this dissertation can be categorized into the following three parts. In the first part of this dissertation, a timely and interesting multiple access problem for a massive number of uncoordinated devices is considered wherein the base station is interested only in recovering the list of messages without regard to the identity of the respective sources. A coding scheme with polynomial encoding and decoding complexities is proposed for this problem, the two main features of which are (i) design of a close-to-optimal coding scheme for the T-user Gaussian multiple access channel and (ii) successive interference cancellation decoder. The proposed coding scheme not only improves on the performance of the previously best known coding scheme by ≈ 13 dB but is only ≈ 6 dB away from the random Gaussian coding information rate. In the second part construction-D lattices are constructed where the underlying linear codes are nested binary spatially-coupled low-density parity-check codes (SCLDPC) codes with uniform left and right degrees. It is shown that the proposed lattices achieve the Poltyrev limit under multistage belief propagation decoding. Leveraging this result lattice codes constructed from these lattices are applied to the three user symmetric interference channel. For channel gains within 0.39 dB from the very strong interference regime, the proposed lattice coding scheme with the iterative belief propagation decoder, for target error rates of ≈ 10^-5, is only 2:6 dB away the Shannon limit. The third part focuses on support recovery in compressed sensing and the nonadaptive group testing (GT) problems. Prior to this work, sensing schemes based on left-regular sparse bipartite graphs and iterative recovery algorithms based on peeling decoder were proposed for the above problems. These schemes require O(K logN) and Ω(K logK logN) measurements respectively to recover the sparse signal with high probability (w.h.p), where N, K denote the dimension and sparsity of the signal respectively (K (double backward arrow) N). Also the number of measurements required to recover at least (1 - €) fraction of defective items w.h.p (approximate GT) is shown to be cv€_K logN/K. In this dissertation, instead of the left-regular bipartite graphs, left-and- right regular bipartite graph based sensing schemes are analyzed. It is shown that this design strategy enables to achieve superior and sharper results. For the support recovery problem, the number of measurements is reduced to the optimal lower bound of Ω (K log N/K). Similarly for the approximate GT, proposed scheme only requires c€_K log N/ K measurements. For the probabilistic GT, proposed scheme requires (K logK log vN/ K) measurements which is only log K factor away from the best known lower bound of Ω (K log N/ K). Apart from the asymptotic regime, the proposed schemes also demonstrate significant improvement in the required number of measurements for finite values of K, N

    Applications of Coding Theory to Massive Multiple Access and Big Data Problems

    Get PDF
    The broad theme of this dissertation is design of schemes that admit iterative algorithms with low computational complexity to some new problems arising in massive multiple access and big data. Although bipartite Tanner graphs and low-complexity iterative algorithms such as peeling and message passing decoders are very popular in the channel coding literature they are not as widely used in the respective areas of study and this dissertation serves as an important step in that direction to bridge that gap. The contributions of this dissertation can be categorized into the following three parts. In the first part of this dissertation, a timely and interesting multiple access problem for a massive number of uncoordinated devices is considered wherein the base station is interested only in recovering the list of messages without regard to the identity of the respective sources. A coding scheme with polynomial encoding and decoding complexities is proposed for this problem, the two main features of which are (i) design of a close-to-optimal coding scheme for the T-user Gaussian multiple access channel and (ii) successive interference cancellation decoder. The proposed coding scheme not only improves on the performance of the previously best known coding scheme by ≈ 13 dB but is only ≈ 6 dB away from the random Gaussian coding information rate. In the second part construction-D lattices are constructed where the underlying linear codes are nested binary spatially-coupled low-density parity-check codes (SCLDPC) codes with uniform left and right degrees. It is shown that the proposed lattices achieve the Poltyrev limit under multistage belief propagation decoding. Leveraging this result lattice codes constructed from these lattices are applied to the three user symmetric interference channel. For channel gains within 0.39 dB from the very strong interference regime, the proposed lattice coding scheme with the iterative belief propagation decoder, for target error rates of ≈ 10^-5, is only 2:6 dB away the Shannon limit. The third part focuses on support recovery in compressed sensing and the nonadaptive group testing (GT) problems. Prior to this work, sensing schemes based on left-regular sparse bipartite graphs and iterative recovery algorithms based on peeling decoder were proposed for the above problems. These schemes require O(K logN) and Ω(K logK logN) measurements respectively to recover the sparse signal with high probability (w.h.p), where N, K denote the dimension and sparsity of the signal respectively (K (double backward arrow) N). Also the number of measurements required to recover at least (1 - €) fraction of defective items w.h.p (approximate GT) is shown to be cv€_K logN/K. In this dissertation, instead of the left-regular bipartite graphs, left-and- right regular bipartite graph based sensing schemes are analyzed. It is shown that this design strategy enables to achieve superior and sharper results. For the support recovery problem, the number of measurements is reduced to the optimal lower bound of Ω (K log N/K). Similarly for the approximate GT, proposed scheme only requires c€_K log N/ K measurements. For the probabilistic GT, proposed scheme requires (K logK log vN/ K) measurements which is only log K factor away from the best known lower bound of Ω (K log N/ K). Apart from the asymptotic regime, the proposed schemes also demonstrate significant improvement in the required number of measurements for finite values of K, N

    Fast Decoder for Overloaded Uniquely Decodable Synchronous Optical CDMA

    Full text link
    In this paper, we propose a fast decoder algorithm for uniquely decodable (errorless) code sets for overloaded synchronous optical code-division multiple-access (O-CDMA) systems. The proposed decoder is designed in a such a way that the users can uniquely recover the information bits with a very simple decoder, which uses only a few comparisons. Compared to maximum-likelihood (ML) decoder, which has a high computational complexity for even moderate code lengths, the proposed decoder has much lower computational complexity. Simulation results in terms of bit error rate (BER) demonstrate that the performance of the proposed decoder for a given BER requires only 1-2 dB higher signal-to-noise ratio (SNR) than the ML decoder.Comment: arXiv admin note: substantial text overlap with arXiv:1806.0395

    Random Access Channel Coding in the Finite Blocklength Regime

    Get PDF
    Consider a random access communication scenario over a channel whose operation is defined for any number of possible transmitters. As in the model recently introduced by Polyanskiy for the Multiple Access Channel (MAC) with a fixed, known number of transmitters, the channel is assumed to be invariant to permutations on its inputs, and all active transmitters employ identical encoders. Unlike the Polyanskiy model, in the proposed scenario, neither the transmitters nor the receiver knows which transmitters are active. We refer to this agnostic communication setup as the Random Access Channel (RAC). Scheduled feedback of a finite number of bits is used to synchronize the transmitters. The decoder is tasked with determining from the channel output the number of active transmitters, k, and their messages but not which transmitter sent which message. The decoding procedure occurs at a time n_t depending on the decoder’s estimate, t, of the number of active transmitters, k, thereby achieving a rate that varies with the number of active transmitters. Single-bit feedback at each time n_i, i ≤ t, enables all transmitters to determine the end of one coding epoch and the start of the next. The central result of this work demonstrates the achievability on a RAC of performance that is first-order optimal for the MAC in operation during each coding epoch. While prior multiple access schemes for a fixed number of transmitters require 2^k - 1 simultaneous threshold rules, the proposed scheme uses a single threshold rule and achieves the same dispersion

    Fast Decoder for Overloaded Uniquely Decodable Synchronous CDMA

    Full text link
    We consider the problem of designing a fast decoder for antipodal uniquely decodable (errorless) code sets for overloaded synchronous code-division multiple access (CDMA) systems where the number of signals K_{max}^a is the largest known for the given code length L. The proposed decoder is designed in a such a way that the users can uniquely recover the information bits with a very simple decoder, which uses only a few comparisons. Compared to maximum-likelihood (ML) decoder, which has a high computational complexity for even moderate code length, the proposed decoder has a much lower computational complexity. Simulation results in terms of bit error rate (BER) demonstrate that the performance of the proposed decoder only has a 1-2 dB degradation at BER of 10^{-3} when compared to ML

    Collaborative modulation multiple access for single hop and multihop networks

    Get PDF
    While the bandwidth available for wireless networks is limited, the world has seen an unprecedented growth in the number of mobile subscribers and an ever increasing demand for high data rates. Therefore efficient utilisation of bandwidth to maximise link spectral efficiency and number of users that can be served simultaneously are primary goals in the design of wireless systems. To achieve these goals, in this thesis, a new non-orthogonal uplink multiple access scheme which combines the functionalities of adaptive modulation and multiple access called collaborative modulation multiple access (CMMA) is proposed. CMMA enables multiple users to access the network simultaneously and share the same bandwidth even when only a single receive antenna is available and in the presence of high channel correlation. Instead of competing for resources, users in CMMA share resources collaboratively by employing unique modulation sets (UMS) that differ in phase, power, and/or mapping structure. These UMS are designed to insure that the received signal formed from the superposition of all users’ signals belongs to a composite QAM constellation (CC) with a rate equal to the sum rate of all users. The CC and its constituent UMSs are designed centrally at the BS to remove ambiguity, maximize the minimum Euclidian distance (dmin) of the CC and insure a minimum BER performance is maintained. Users collaboratively precode their transmitted signal by performing truncated channel inversion and phase rotation using channel state information (CSI ) obtained from a periodic common pilot to insure that their combined signal at the BS belongs to the CC known at the BS which in turn performs a simple joint maximum likelihood detection without the need for CSI. The coherent addition of users’ power enables CMMA to achieve high link spectral efficiency at any time without extra power or bandwidth but on the expense of graceful degradation in BER performance. To improve the BER performance of CMMA while preserving its precoding and detection structure and without the need for pilot-aided channel estimation, a new selective diversity combining scheme called SC-CMMA is proposed. SC-CMMA optimises the overall group performance providing fairness and diversity gain for various users with different transmit powers and channel conditions by selecting a single antenna out of a group of L available antennas that minimises the total transmit power required for precoding at any one time. A detailed study of capacity and BER performance of CMMA and SC-CMMA is carried out under different level of channel correlations which shows that both offer high capacity gain and resilience to channel correlation. SC-CMMA capacity even increase with high channel correlation between users’ channels. CMMA provides a practical solution for implementing the multiple access adder channel (MAAC) in fading environments hence a hybrid approach combining both collaborative coding and modulation referred to as H-CMMA is investigated. H-CMMA divides users into a number of subgroups where users within a subgroup are assigned the same modulation set and different multiple access codes. H-CMMA adjusts the dmin of the received CC by varying the number of subgroups which in turn varies the number of unique constellation points for the same number of users and average total power. Therefore H-CMMA can accommodate many users with different rates while flexibly managing the complexity, rate and BER performance depending on the SNR. Next a new scheme combining CMMA with opportunistic scheduling using only partial CSI at the receiver called CMMA-OS is proposed to combine both the power gain of CMMA and the multiuser diversity gain that arises from users’ channel independence. To avoid the complexity and excessive feedback associated with the dynamic update of the CC, the BS takes into account the independence of users’ channels in the design of the CC and its constituent UMSs but both remain unchanged thereafter. However UMS are no longer associated with users, instead channel gain’s probability density function is divided into regions with identical probability and each UMS is associated with a specific region. This will simplify scheduling as users can initially chose their UMS based on their CSI and the BS will only need to resolve any collision when the channels of two or more users are located at the same region. Finally a high rate cooperative communication scheme, called cooperative modulation (CM) is proposed for cooperative multiuser systems. CM combines the reliability of the cooperative diversity with the high spectral efficiency and multiple access capabilities of CMMA. CM maintains low feedback and high spectral efficiency by restricting relaying to a single route with the best overall channel. Two possible variations of CM are proposed depending on whether CSI available only at the users or just at the BS and the selected relay. The first is referred to Precode, Amplify, and Forward (PAF) while the second one is called Decode, Remap, and Forward (DMF). A new route selection algorithm for DMF based on maximising dmin of random CC is also proposed using a novel fast low-complexity multi-stage sphere based algorithm to calculate the dmin at the relay of random CC that is used for both relay selection and detection

    Convolutional Coded Generalized Direct Sequence Spread Spectrum

    Get PDF
    In this thesis we investigate the worst-case performance of coded ordinary and coded generalized direct sequence spread spectrum (DSSS) systems in a communication channel corrupted by an unknown and arbitrary interfering signal of bounded power. We consider convolutional codes with Viterbi decoding in order to compare the performance of coded ordinary and coded generalized DSSS systems. For the generalized DSSS system, we use a pulse stream of +1,-1 and 0 as the spreading sequence, which is different from ordinary DSSS system which uses the typical sequence with pulse values of +1 and -1. A C program for performing Monte-Carlo simulations is written in order to evaluate and compare the performance of coded ordinary and coded generalized DSSS systems. Plots of the worst-case error probability versus signal-to-interference ratio are presented for different code rates and constraint lengths of the convolutional code. Simulation results of the worst-case performance of ordinary and generalized DSSS show that generalized DSSS consistently performs appreciably better than ordinary DSSS. Simulation is performed for various code rates, various constraint lengths of the convolutional code and various lengths of the convolutional interleaver. Over all these simulations, it is observed that the difference between ordinary and generalized DSSS gets more pronounced as the channel gets wors

    NASA Space Engineering Research Center Symposium on VLSI Design

    Get PDF
    The NASA Space Engineering Research Center (SERC) is proud to offer, at its second symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories and the electronics industry. These featured speakers share insights into next generation advances that will serve as a basis for future VLSI design. Questions of reliability in the space environment along with new directions in CAD and design are addressed by the featured speakers

    Multi-user receiver structures for direct sequence code division multiple access

    Get PDF
    corecore