171 research outputs found

    An efficient closed frequent itemset miner for the MOA stream mining system

    Get PDF
    Mining itemsets is a central task in data mining, both in the batch and the streaming paradigms. While robust, efficient, and well-tested implementations exist for batch mining, hardly any publicly available equivalent exists for the streaming scenario. The lack of an efficient, usable tool for the task hinders its use by practitioners and makes it difficult to assess new research in the area. To alleviate this situation, we review the algorithms described in the literature, and implement and evaluate the IncMine algorithm by Cheng, Ke, and Ng (2008) for mining frequent closed itemsets from data streams. Our implementation works on top of the MOA (Massive Online Analysis) stream mining framework to ease its use and integration with other stream mining tasks. We provide a PAC-style rigorous analysis of the quality of the output of IncMine as a function of its parameters; this type of analysis is rare in pattern mining algorithms. As a by-product, the analysis shows how one of the user-provided parameters in the original description can be removed entirely while retaining the performance guarantees. Finally, we experimentally confirm both on synthetic and real data the excellent performance of the algorithm, as reported in the original paper, and its ability to handle concept drift.Postprint (published version

    Max-FISM: Mining (recently) maximal frequent itemsets over data streams using the sliding window model

    Get PDF
    AbstractFrequent itemset mining from data streams is an important data mining problem with broad applications such as retail market data analysis, network monitoring, web usage mining, and stock market prediction. However, it is also a difficult problem due to the unbounded, high-speed and continuous characteristics of streaming data. Therefore, extracting frequent itemsets from more recent data can enhance the analysis of stream data. In this paper, we propose an efficient algorithm, called Max-FISM (Maximal-Frequent Itemsets Mining), for mining recent maximal frequent itemsets from a high-speed stream of transactions within a sliding window. According to our algorithm, whenever a new transaction is inserted in the current window only its maximum itemset should be inserted into a prefix tree-based summary data structure called Max-Set for maintaining the number of independent appearance of each transaction in the current window. Finally, the set of recent maximal frequent itemsets is obtained from the current Max-Set. Experimental studies show that the proposed Max-FISM algorithm is highly efficient in terms of memory and time complexity for mining recent maximal frequent itemsets over high-speed data streams

    From sequential patterns to concurrent branch patterns: a new post sequential patterns mining approach

    Get PDF
    A thesis submitted for the degree of Doctor ofPhilosophy of the University of BedfordshireSequential patterns mining is an important pattern discovery technique used to identify frequently observed sequential occurrence of items across ordered transactions over time. It has been intensively studied and there exists a great diversity of algorithms. However, there is a major problem associated with the conventional sequential patterns mining in that patterns derived are often large and not very easy to understand or use. In addition, more complex relations among events are often hidden behind sequences. A novel model for sequential patterns called Sequential Patterns Graph (SPG) is proposed. The construction algorithm of SPG is presented with experimental results to substantiate the concept. The thesis then sets out to define some new structural patterns such as concurrent branch patterns, exclusive patterns and iterative patterns which are generally hidden behind sequential patterns. Finally, an integrative framework, named Post Sequential Patterns Mining (PSPM), which is based on sequential patterns mining, is also proposed for the discovery and visualisation of structural patterns. This thesis is intended to prove that discrete sequential patterns derived from traditional sequential patterns mining can be modelled graphically using SPG. It is concluded from experiments and theoretical studies that SPG is not only a minimal representation of sequential patterns mining, but it also represents the interrelation among patterns and establishes further the foundation for mining structural knowledge (i.e. concurrent branch patterns, exclusive patterns and iterative patterns). from experiments conducted on both synthetic and real datasets, it is shown that Concurrent Branch Patterns (CBP) mining is an effective and efficient mining algorithm suitable for concurrent branch patterns

    Abduction and Anonymity in Data Mining

    Get PDF
    This thesis investigates two new research problems that arise in modern data mining: reasoning on data mining results, and privacy implication of data mining results. Most of the data mining algorithms rely on inductive techniques, trying to infer information that is generalized from the input data. But very often this inductive step on raw data is not enough to answer the user questions, and there is the need to process data again using other inference methods. In order to answer high level user needs such as explanation of results, we describe an environment able to perform abductive (hypothetical) reasoning, since often the solutions of such queries can be seen as the set of hypothesis that satisfy some requirements. By using cost-based abduction, we show how classification algorithms can be boosted by performing abductive reasoning over the data mining results, improving the quality of the output. Another growing research area in data mining is the one of privacy-preserving data mining. Due to the availability of large amounts of data, easily collected and stored via computer systems, new applications are emerging, but unfortunately privacy concerns make data mining unsuitable. We study the privacy implications of data mining in a mathematical and logical context, focusing on the anonymity of people whose data are analyzed. A formal theory on anonymity preserving data mining is given, together with a number of anonymity-preserving algorithms for pattern mining. The post-processing improvement on data mining results (w.r.t. utility and privacy) is the central focus of the problems we investigated in this thesis
    • …
    corecore