2,454 research outputs found

    Towards Fairness-Aware Federated Learning

    Full text link
    Recent advances in Federated Learning (FL) have brought large-scale collaborative machine learning opportunities for massively distributed clients with performance and data privacy guarantees. However, most current works focus on the interest of the central controller in FL,and overlook the interests of the FL clients. This may result in unfair treatment of clients which discourages them from actively participating in the learning process and damages the sustainability of the FL ecosystem. Therefore, the topic of ensuring fairness in FL is attracting a great deal of research interest. In recent years, diverse Fairness-Aware FL (FAFL) approaches have been proposed in an effort to achieve fairness in FL from different perspectives. However, there is no comprehensive survey which helps readers gain insight into this interdisciplinary field. This paper aims to provide such a survey. By examining the fundamental and simplifying assumptions, as well as the notions of fairness adopted by existing literature in this field, we propose a taxonomy of FAFL approaches covering major steps in FL, including client selection, optimization, contribution evaluation and incentive distribution. In addition, we discuss the main metrics for experimentally evaluating the performance of FAFL approaches, and suggest promising future research directions towards fairness-aware federated learning.Comment: 16 pages, 4 figure

    Trustworthy Federated Learning: A Survey

    Full text link
    Federated Learning (FL) has emerged as a significant advancement in the field of Artificial Intelligence (AI), enabling collaborative model training across distributed devices while maintaining data privacy. As the importance of FL increases, addressing trustworthiness issues in its various aspects becomes crucial. In this survey, we provide an extensive overview of the current state of Trustworthy FL, exploring existing solutions and well-defined pillars relevant to Trustworthy . Despite the growth in literature on trustworthy centralized Machine Learning (ML)/Deep Learning (DL), further efforts are necessary to identify trustworthiness pillars and evaluation metrics specific to FL models, as well as to develop solutions for computing trustworthiness levels. We propose a taxonomy that encompasses three main pillars: Interpretability, Fairness, and Security & Privacy. Each pillar represents a dimension of trust, further broken down into different notions. Our survey covers trustworthiness challenges at every level in FL settings. We present a comprehensive architecture of Trustworthy FL, addressing the fundamental principles underlying the concept, and offer an in-depth analysis of trust assessment mechanisms. In conclusion, we identify key research challenges related to every aspect of Trustworthy FL and suggest future research directions. This comprehensive survey serves as a valuable resource for researchers and practitioners working on the development and implementation of Trustworthy FL systems, contributing to a more secure and reliable AI landscape.Comment: 45 Pages, 8 Figures, 9 Table

    Fairness and Privacy in Federated Learning and Their Implications in Healthcare

    Full text link
    Currently, many contexts exist where distributed learning is difficult or otherwise constrained by security and communication limitations. One common domain where this is a consideration is in Healthcare where data is often governed by data-use-ordinances like HIPAA. On the other hand, larger sample sizes and shared data models are necessary to allow models to better generalize on account of the potential for more variability and balancing underrepresented classes. Federated learning is a type of distributed learning model that allows data to be trained in a decentralized manner. This, in turn, addresses data security, privacy, and vulnerability considerations as data itself is not shared across a given learning network nodes. Three main challenges to federated learning include node data is not independent and identically distributed (iid), clients requiring high levels of communication overhead between peers, and there is the heterogeneity of different clients within a network with respect to dataset bias and size. As the field has grown, the notion of fairness in federated learning has also been introduced through novel implementations. Fairness approaches differ from the standard form of federated learning and also have distinct challenges and considerations for the healthcare domain. This paper endeavors to outline the typical lifecycle of fair federated learning in research as well as provide an updated taxonomy to account for the current state of fairness in implementations. Lastly, this paper provides added insight into the implications and challenges of implementing and supporting fairness in federated learning in the healthcare domain

    FAC-fed: Federated adaptation for fairness and concept drift aware stream classification

    Get PDF
    Federated learning is an emerging collaborative learning paradigm of Machine learning involving distributed and heterogeneous clients. Enormous collections of continuously arriving heterogeneous data residing on distributed clients require federated adaptation of efficient mining algorithms to enable fair and high-quality predictions with privacy guarantees and minimal response delay. In this context, we propose a federated adaptation that mitigates discrimination embedded in the streaming data while handling concept drifts (FAC-Fed). We present a novel adaptive data augmentation method that mitigates client-side discrimination embedded in the data during optimization, resulting in an optimized and fair centralized server. Extensive experiments on a set of publicly available streaming and static datasets confirm the effectiveness of the proposed method. To the best of our knowledge, this work is the first attempt towards fairness-aware federated adaptation for stream classification, therefore, to prove the superiority of our proposed method over state-of-the-art, we compare the centralized version of our proposed method with three centralized stream classification baseline models (FABBOO, FAHT, CSMOTE). The experimental results show that our method outperforms the current methods in terms of both discrimination mitigation and predictive performance

    A Snapshot of the Frontiers of Client Selection in Federated Learning

    Get PDF
    Federated learning (FL) has been proposed as a privacy-preserving approach in distributed machine learning. A federated learning architecture consists of a central server and a number of clients that have access to private, potentially sensitive data. Clients are able to keep their data in their local machines and only share their locally trained model's parameters with a central server that manages the collaborative learning process. FL has delivered promising results in real-life scenarios, such as healthcare, energy, and finance. However, when the number of participating clients is large, the overhead of managing the clients slows down the learning. Thus, client selection has been introduced as a strategy to limit the number of communicating parties at every step of the process. Since the early na\"{i}ve random selection of clients, several client selection methods have been proposed in the literature. Unfortunately, given that this is an emergent field, there is a lack of a taxonomy of client selection methods, making it hard to compare approaches. In this paper, we propose a taxonomy of client selection in Federated Learning that enables us to shed light on current progress in the field and identify potential areas of future research in this promising area of machine learning.Comment: 17 pages, 3 figures, 1 appendix, submitted to TML

    Privacy-Preserving Blockchain-Based Federated Learning for IoT Devices

    Full text link
    Home appliance manufacturers strive to obtain feedback from users to improve their products and services to build a smart home system. To help manufacturers develop a smart home system, we design a federated learning (FL) system leveraging the reputation mechanism to assist home appliance manufacturers to train a machine learning model based on customers' data. Then, manufacturers can predict customers' requirements and consumption behaviors in the future. The working flow of the system includes two stages: in the first stage, customers train the initial model provided by the manufacturer using both the mobile phone and the mobile edge computing (MEC) server. Customers collect data from various home appliances using phones, and then they download and train the initial model with their local data. After deriving local models, customers sign on their models and send them to the blockchain. In case customers or manufacturers are malicious, we use the blockchain to replace the centralized aggregator in the traditional FL system. Since records on the blockchain are untampered, malicious customers or manufacturers' activities are traceable. In the second stage, manufacturers select customers or organizations as miners for calculating the averaged model using received models from customers. By the end of the crowdsourcing task, one of the miners, who is selected as the temporary leader, uploads the model to the blockchain. To protect customers' privacy and improve the test accuracy, we enforce differential privacy on the extracted features and propose a new normalization technique. We experimentally demonstrate that our normalization technique outperforms batch normalization when features are under differential privacy protection. In addition, to attract more customers to participate in the crowdsourcing FL task, we design an incentive mechanism to award participants.Comment: This paper appears in IEEE Internet of Things Journal (IoT-J

    PoFEL: Energy-efficient Consensus for Blockchain-based Hierarchical Federated Learning

    Full text link
    Facilitated by mobile edge computing, client-edge-cloud hierarchical federated learning (HFL) enables communication-efficient model training in a widespread area but also incurs additional security and privacy challenges from intermediate model aggregations and remains the single point of failure issue. To tackle these challenges, we propose a blockchain-based HFL (BHFL) system that operates a permissioned blockchain among edge servers for model aggregation without the need for a centralized cloud server. The employment of blockchain, however, introduces additional overhead. To enable a compact and efficient workflow, we design a novel lightweight consensus algorithm, named Proof of Federated Edge Learning (PoFEL), to recycle the energy consumed for local model training. Specifically, the leader node is selected by evaluating the intermediate FEL models from all edge servers instead of other energy-wasting but meaningless calculations. This design thus improves the system efficiency compared with traditional BHFL frameworks. To prevent model plagiarism and bribery voting during the consensus process, we propose Hash-based Commitment and Digital Signature (HCDS) and Bayesian Truth Serum-based Voting (BTSV) schemes. Finally, we devise an incentive mechanism to motivate continuous contributions from clients to the learning task. Experimental results demonstrate that our proposed BHFL system with the corresponding consensus protocol and incentive mechanism achieves effectiveness, low computational cost, and fairness

    Fairness-Aware Client Selection for Federated Learning

    Full text link
    Federated learning (FL) has enabled multiple data owners (a.k.a. FL clients) to train machine learning models collaboratively without revealing private data. Since the FL server can only engage a limited number of clients in each training round, FL client selection has become an important research problem. Existing approaches generally focus on either enhancing FL model performance or enhancing the fair treatment of FL clients. The problem of balancing performance and fairness considerations when selecting FL clients remains open. To address this problem, we propose the Fairness-aware Federated Client Selection (FairFedCS) approach. Based on Lyapunov optimization, it dynamically adjusts FL clients' selection probabilities by jointly considering their reputations, times of participation in FL tasks and contributions to the resulting model performance. By not using threshold-based reputation filtering, it provides FL clients with opportunities to redeem their reputations after a perceived poor performance, thereby further enhancing fair client treatment. Extensive experiments based on real-world multimedia datasets show that FairFedCS achieves 19.6% higher fairness and 0.73% higher test accuracy on average than the best-performing state-of-the-art approach.Comment: Accepted by ICME 202
    corecore