4 research outputs found

    Real-Time Misbehavior Detection in IEEE 802.11e Based WLANs

    Full text link
    The Enhanced Distributed Channel Access (EDCA) specification in the IEEE 802.11e standard supports heterogeneous backoff parameters and arbitration inter-frame space (AIFS), which makes a selfish node easy to manipulate these parameters and misbehave. In this case, the network-wide fairness cannot be achieved any longer. Many existing misbehavior detectors, primarily designed for legacy IEEE 802.11 networks, become inapplicable in such a heterogeneous network configuration. In this paper, we propose a novel real-time hybrid-share (HS) misbehavior detector for IEEE 802.11e based wireless local area networks (WLANs). The detector keeps updating its state based on every successful transmission and makes detection decisions by comparing its state with a threshold. We develop mathematical analysis of the detector performance in terms of both false positive rate and average detection rate. Numerical results show that the proposed detector can effectively detect both contention window based and AIFS based misbehavior with only a short detection window.Comment: Accepted to IEEE Globecom 201

    Analysis and optimal configuration of distributed opportunistic scheduling techniques in wireless networks

    Get PDF
    The phenomenon of fading in wireless communications has traditionally been considered as a source of unreliability that needs to be mitigated. In contrast, Opportunistic Scheduling (OS) techniques exploit quick channel quality oscillations in fading links, during the assignment of transmission opportunities, to improve the performance of wireless networks. While centralized mechanisms rely on a central entity with global knowledge, Distributed Opportunistic Scheduling (DOS) techniques have recently been proposed to work in distributed networks, i.e., where either such a central entity is not available, or the communication overhead to feed timely information to this central entity is prohibitive. With DOS, each station contends for the channel with a certain access probability. If a contention is successful, the station measures the channel conditions and transmits if the channel quality is above a certain threshold. Otherwise, the station does not use the transmission opportunity, allowing all stations to recontend. Given the fact that different stations, in different time instances, experience different channel conditions, it is likely that the channel is used by a link with better conditions, improving overall performance. In this thesis we first propose ADOS, an adaptive mechanism that drives the system to an optimal allocation of resources in terms of proportional fairness. We show that this mechanism outperforms previous approaches, particularly in scenarios with non-saturated stations (that do not always have data to transmit). The distributed nature of DOS makes it particularly vulnerable to selfish users that seek to maximize their own performance at the expense of those that cooperate for the common welfare. We thus design a punishing mechanism, namely DOC, that (i) drives the system to the optimal point of operation when all stations follow the protocol, and (ii) removes any potential gain by deviating from it (and thus, the incentive to misbehave). Finally, we propose a novel allocation criterion, namely the EF criterion, to balance between the most energy-eficient configuration (where all resources are given to the most energy e cient devices) and the throughput-optimal allocation (where all devices evenly share the resources regardless of their power consumption). Due to the lack of models that accurately predict the power consumption behavior of wireless devices, we perform a thorough experimental study to devise a power consumption model that completes existing literature. Finally, we apply these findings to design an EF-optimal strategy in DOS networks. --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------El fenómeno de "fading" o desvanecimiento en comunicaciones inalámbricas se ha considerado tradicionalmente como una fuente de problemas de fiabilidad que debe ser mitigada. En contraste, las técnicas de asignación de recursos oportunistas aprovechan las oscilaciones en la calidad de enlaces para mejorar el rendimiento global. Mientras que los mecanismos centralizados requieren una entidad central con información global, recientemente se han propuesto técnicas oportunistas distribuidas (DOS, por sus siglas en inglés) para operar en redes donde dicha entidad no está disponible, o donde el coste en la comunicación para proporcionarle información puntual es prohibitivo. Con DOS, cada estación contiende por el canal con una cierta probabilidad. Si la contienda resulta exitosa, la estación mide la calidad del canal y transmite si ésta supera un cierto umbral. De lo contrario, la estación no aprovecha esa oportunidad para transmitir, permitiendo a todas las estaciones contender de nuevo. Dado que estaciones diferentes, en distintas instancias de tiempo, experimentan diferentes condiciones de canal, es probable que un enlace con mejores condiciones use el canal, mejorando el rendimiento global. En esta tesis proponemos primero ADOS, un mecanismo adaptativo que lleva al sistema a un reparto óptimo de los recursos en términos de equidad proporcional. Mostramos que este mecanismo supera el rendimiento de trabajos previos, particularmente en escenarios con estaciones no saturados (que no siempre tienen datos que transmitir). La naturaleza distribuida de DOS lo hace particularmente vulnerable a usuarios egoístas que buscan maximizar su rendimiento a expensas de aquellos que cooperan por el bien común. Así, diseñamos un mecanismo, llamado DOC, que (i) optimiza el rendimiento si todos los nodos obedecen el protocolo, y (ii) elimina cualquier posible beneficio por desviarse del mismo (y así, el incentivo a no cooperar). Finalmente, proponemos un nuevo criterio de asignación de recursos, llamado EF, que supone un compromiso entre la configuración más eficiente energéticamente (donde todos los recursos se asignan a los nodos más eficientes) y una asignación donde todos comparten de forma equitativa los recursos sin tener en cuenta su consumo. Dada la falta de modelos para predecir de forma precisa el consumo de dispositivos inalámbricos, llevamos a cabo un estudio experimental que resulta en un modelo energético que completa a la literatura existente. Finalmente, aplicamos lo anterior para diseñar una estrategia que optimiza EF en redes basadas en DOS

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms
    corecore