87 research outputs found

    Device Free Localisation Techniques in Indoor Environments

    Get PDF
    The location estimation of a target for a long period was performed only by device based localisation technique which is difficult in applications where target especially human is non-cooperative. A target was detected by equipping a device using global positioning systems, radio frequency systems, ultrasonic frequency systems, etc. Device free localisation (DFL) is an upcoming technology in automated localisation in which target need not equip any device for identifying its position by the user. For achieving this objective, the wireless sensor network is a better choice due to its growing popularity. This paper describes the possible categorisation of recently developed DFL techniques using wireless sensor network. The scope of each category of techniques is analysed by comparing their potential benefits and drawbacks. Finally, future scope and research directions in this field are also summarised

    Dial It In: Rotating RF Sensors to Enhance Radio Tomography

    Full text link
    A radio tomographic imaging (RTI) system uses the received signal strength (RSS) measured by RF sensors in a static wireless network to localize people in the deployment area, without having them to carry or wear an electronic device. This paper addresses the fact that small-scale changes in the position and orientation of the antenna of each RF sensor can dramatically affect imaging and localization performance of an RTI system. However, the best placement for a sensor is unknown at the time of deployment. Improving performance in a deployed RTI system requires the deployer to iteratively "guess-and-retest", i.e., pick a sensor to move and then re-run a calibration experiment to determine if the localization performance had improved or degraded. We present an RTI system of servo-nodes, RF sensors equipped with servo motors which autonomously "dial it in", i.e., change position and orientation to optimize the RSS on links of the network. By doing so, the localization accuracy of the RTI system is quickly improved, without requiring any calibration experiment from the deployer. Experiments conducted in three indoor environments demonstrate that the servo-nodes system reduces localization error on average by 32% compared to a standard RTI system composed of static RF sensors.Comment: 9 page

    Joint Ultra-wideband and Signal Strength-based Through-building Tracking for Tactical Operations

    Full text link
    Accurate device free localization (DFL) based on received signal strength (RSS) measurements requires placement of radio transceivers on all sides of the target area. Accuracy degrades dramatically if sensors do not surround the area. However, law enforcement officers sometimes face situations where it is not possible or practical to place sensors on all sides of the target room or building. For example, for an armed subject barricaded in a motel room, police may be able to place sensors in adjacent rooms, but not in front of the room, where the subject would see them. In this paper, we show that using two ultra-wideband (UWB) impulse radios, in addition to multiple RSS sensors, improves the localization accuracy, particularly on the axis where no sensors are placed (which we call the x-axis). We introduce three methods for combining the RSS and UWB data. By using UWB radios together with RSS sensors, it is still possible to localize a person through walls even when the devices are placed only on two sides of the target area. Including the data from the UWB radios can reduce the localization area of uncertainty by more than 60%.Comment: 9 pages, conference submissio

    An adaptive weighting algorithm for accurate radio tomographic image in the environment with multipath and WiFi interference

    Get PDF
    Radio frequency device-free localization based on wireless sensor network has proved its feasibility in buildings. With this technique, a target can be located relying on the changes of received signal strengths caused by the moving object. However, the accuracy of many such systems deteriorates seriously in the environment with WiFi and the multipath interference. State-of-the-art methods do not efficiently solve the WiFi and multipath interference problems at the same time. In this article, we propose and evaluate an adaptive weighting radio tomography image algorithm to improve the accuracy of radio frequency device-free localization in the environment with multipath and different intensity of WiFi interference. Field experiments prove that our approach outperforms the state-of-the-art radio frequency device-free localization systems in the environment with multipath and WiFi interference

    Doctor of Philosophy

    Get PDF
    dissertationLow-cost wireless embedded systems can make radio channel measurements for the purposes of radio localization, synchronization, and breathing monitoring. Most of those systems measure the radio channel via the received signal strength indicator (RSSI), which is widely available on inexpensive radio transceivers. However, the use of standard RSSI imposes multiple limitations on the accuracy and reliability of such systems; moreover, higher accuracy is only accessible with very high-cost systems, both in bandwidth and device costs. On the other hand, wireless devices also rely on synchronized notion of time to coordinate tasks (transmit, receive, sleep, etc.), especially in time-based localization systems. Existing solutions use multiple message exchanges to estimate time offset and clock skew, which further increases channel utilization. In this dissertation, the design of the systems that use RSSI for device-free localization, device-based localization, and breathing monitoring applications are evaluated. Next, the design and evaluation of novel wireless embedded systems are introduced to enable more fine-grained radio signal measurements to the application. I design and study the effect of increasing the resolution of RSSI beyond the typical 1 dB step size, which is the current standard, with a couple of example applications: breathing monitoring and gesture recognition. Lastly, the Stitch architecture is then proposed to allow the frequency and time synchronization of multiple nodes' clocks. The prototype platform, Chronos, implements radio frequency synchronization (RFS), which accesses complex baseband samples from a low-power low-cost narrowband radio, estimates the carrier frequency offset, and iteratively drives the difference between two nodes' main local oscillators (LO) to less than 3 parts per billion (ppb). An optimized time synchronization and ranging protocols (EffToF) is designed and implemented to achieve the same timing accuracy as the state-of-the-art but with 59% less utilization of the UWB channel. Based on this dissertation, I could foresee Stitch and RFS further improving the robustness of communications infrastructure to GPS jamming, allow exploration of applications such as distributed beamforming and MIMO, and enable new highly-synchronous wireless sensing and actuation systems
    • …
    corecore