91,917 research outputs found

    DWT Feature Extraction Based Face Recognition using Intensity Mapped Unsharp Masking and Laplacian of Gaussian Filtering with Scalar Multiplier

    Get PDF
    AbstractFace recognition under varying illumination and poses at certain angles is challenging, and hence improved edge prominence and contrast enhancement techniques are an effective approach to solve this problem. This paper proposes two novel techniques, namely, Intensity Mapped Unsharp Masking (IMUM) which provides a much finer outline of the face image by reducing the background intensity, and Laplacian of Gaussian based filtering with Scalar Multiplier (LOGSM) which provides an improved edge detection. Individual stages of the FR System are examined and an attempt is made to improve each stage. A Binary Particle Swarm Optimization (BPSO) based feature selection algorithm is used to search the feature vector space for the optimal feature subset. Experimental results, obtained by applying the proposed algorithm on ORL, UMIST, Extended YaleB, ColorFERET face databases, show that the proposed system outperforms other FR systems. A significant increase in the overall recognition rate and a substantial reduction in the selected features are observed

    Long Range Automated Persistent Surveillance

    Get PDF
    This dissertation addresses long range automated persistent surveillance with focus on three topics: sensor planning, size preserving tracking, and high magnification imaging. field of view should be reserved so that camera handoff can be executed successfully before the object of interest becomes unidentifiable or untraceable. We design a sensor planning algorithm that not only maximizes coverage but also ensures uniform and sufficient overlapped camera’s field of view for an optimal handoff success rate. This algorithm works for environments with multiple dynamic targets using different types of cameras. Significantly improved handoff success rates are illustrated via experiments using floor plans of various scales. Size preserving tracking automatically adjusts the camera’s zoom for a consistent view of the object of interest. Target scale estimation is carried out based on the paraperspective projection model which compensates for the center offset and considers system latency and tracking errors. A computationally efficient foreground segmentation strategy, 3D affine shapes, is proposed. The 3D affine shapes feature direct and real-time implementation and improved flexibility in accommodating the target’s 3D motion, including off-plane rotations. The effectiveness of the scale estimation and foreground segmentation algorithms is validated via both offline and real-time tracking of pedestrians at various resolution levels. Face image quality assessment and enhancement compensate for the performance degradations in face recognition rates caused by high system magnifications and long observation distances. A class of adaptive sharpness measures is proposed to evaluate and predict this degradation. A wavelet based enhancement algorithm with automated frame selection is developed and proves efficient by a considerably elevated face recognition rate for severely blurred long range face images

    A stochastic algorithm for feature selection in pattern recognition

    Get PDF
    Abstract We introduce a new model adressing feature selection from a large dictionary of variables that can be computed from a signal or an image. Features are extracted according to an efficiency criterion, on the basis of specified classification or recognition tasks. This is done by estimating a probability distribution P on the complete dictionary, which distributes its mass over the more efficient, or informative, components. We implement a stochastic gradient descent algorithm, using the probability as a state variable and optimizing a multitask goodness of fit criterion for classifiers based on variable randomly chosen according to P. We then generate classifiers from the optimal distribution of weights learned on the training set. The method is first tested on several pattern recognition problems including face detection, handwritten digit recognition, spam classification and micro-array analysis. We then compare our approach with other step-wise algorithms like random forests or recursive feature elimination

    Quadratic Projection Based Feature Extraction with Its Application to Biometric Recognition

    Full text link
    This paper presents a novel quadratic projection based feature extraction framework, where a set of quadratic matrices is learned to distinguish each class from all other classes. We formulate quadratic matrix learning (QML) as a standard semidefinite programming (SDP) problem. However, the con- ventional interior-point SDP solvers do not scale well to the problem of QML for high-dimensional data. To solve the scalability of QML, we develop an efficient algorithm, termed DualQML, based on the Lagrange duality theory, to extract nonlinear features. To evaluate the feasibility and effectiveness of the proposed framework, we conduct extensive experiments on biometric recognition. Experimental results on three representative biometric recogni- tion tasks, including face, palmprint, and ear recognition, demonstrate the superiority of the DualQML-based feature extraction algorithm compared to the current state-of-the-art algorithm

    Manifold Elastic Net: A Unified Framework for Sparse Dimension Reduction

    Full text link
    It is difficult to find the optimal sparse solution of a manifold learning based dimensionality reduction algorithm. The lasso or the elastic net penalized manifold learning based dimensionality reduction is not directly a lasso penalized least square problem and thus the least angle regression (LARS) (Efron et al. \cite{LARS}), one of the most popular algorithms in sparse learning, cannot be applied. Therefore, most current approaches take indirect ways or have strict settings, which can be inconvenient for applications. In this paper, we proposed the manifold elastic net or MEN for short. MEN incorporates the merits of both the manifold learning based dimensionality reduction and the sparse learning based dimensionality reduction. By using a series of equivalent transformations, we show MEN is equivalent to the lasso penalized least square problem and thus LARS is adopted to obtain the optimal sparse solution of MEN. In particular, MEN has the following advantages for subsequent classification: 1) the local geometry of samples is well preserved for low dimensional data representation, 2) both the margin maximization and the classification error minimization are considered for sparse projection calculation, 3) the projection matrix of MEN improves the parsimony in computation, 4) the elastic net penalty reduces the over-fitting problem, and 5) the projection matrix of MEN can be interpreted psychologically and physiologically. Experimental evidence on face recognition over various popular datasets suggests that MEN is superior to top level dimensionality reduction algorithms.Comment: 33 pages, 12 figure
    corecore