586 research outputs found

    Medical image encryption techniques: a technical survey and potential challenges

    Get PDF
    Among the most sensitive and important data in telemedicine systems are medical images. It is necessary to use a robust encryption method that is resistant to cryptographic assaults while transferring medical images over the internet. Confidentiality is the most crucial of the three security goals for protecting information systems, along with availability, integrity, and compliance. Encryption and watermarking of medical images address problems with confidentiality and integrity in telemedicine applications. The need to prioritize security issues in telemedicine applications makes the choice of a trustworthy and efficient strategy or framework all the more crucial. The paper examines various security issues and cutting-edge methods to secure medical images for use with telemedicine systems

    Person Re-Identification without Identification via Event Anonymization

    Full text link
    Wide-scale use of visual surveillance in public spaces puts individual privacy at stake while increasing resource consumption (energy, bandwidth, and computation). Neuromorphic vision sensors (event-cameras) have been recently considered a valid solution to the privacy issue because they do not capture detailed RGB visual information of the subjects in the scene. However, recent deep learning architectures have been able to reconstruct images from event cameras with high fidelity, reintroducing a potential threat to privacy for event-based vision applications. In this paper, we aim to anonymize event-streams to protect the identity of human subjects against such image reconstruction attacks. To achieve this, we propose an end-to-end network architecture jointly optimized for the twofold objective of preserving privacy and performing a downstream task such as person ReId. Our network learns to scramble events, enforcing the degradation of images recovered from the privacy attacker. In this work, we also bring to the community the first ever event-based person ReId dataset gathered to evaluate the performance of our approach. We validate our approach with extensive experiments and report results on the synthetic event data simulated from the publicly available SoftBio dataset and our proposed Event-ReId dataset.Comment: Accepted at International Conference on Computer Vision (ICCV), 202

    Privacy-Friendly Photo Sharing and Relevant Applications Beyond

    Get PDF
    Popularization of online photo sharing brings people great convenience, but has also raised concerns for privacy. Researchers proposed various approaches to enable image privacy, most of which focus on encrypting or distorting image visual content. In this thesis, we investigate novel solutions to protect image privacy with a particular emphasis on online photo sharing. To this end, we propose not only algorithms to protect visual privacy in image content but also design of architectures for privacy-preserving photo sharing. Beyond privacy, we also explore additional impacts and potentials of employing daily images in other three relevant applications. First, we propose and study two image encoding algorithms to protect visual content in image, within a Secure JPEG framework. The first method scrambles a JPEG image by randomly changing the signs of its DCT coefficients based on a secret key. The second method, named JPEG Transmorphing, allows one to protect arbitrary image regions with any obfuscation, while secretly preserving the original image regions in application segments of the obfuscated JPEG image. Performance evaluations reveal a good degree of storage overhead and privacy protection capability for both methods, and particularly a good level of pleasantness for JPEG Transmorphing, if proper manipulations are applied. Second, we investigate the design of two architectures for privacy-preserving photo sharing. The first architecture, named ProShare, is built on a public key infrastructure (PKI) integrated with a ciphertext-policy attribute-based encryption (CP-ABE), to enable the secure and efficient access to user-posted photos protected by Secure JPEG. The second architecture is named ProShare S, in which a photo sharing service provider helps users make photo sharing decisions automatically based on their past decisions using machine learning. The photo sharing service analyzes not only the content of a user's photo, but also context information about the image capture and a prospective requester, and finally makes decision whether or not to share a particular photo to the requester, and if yes, at which granularity. A user study along with extensive evaluations were performed to validate the proposed architecture. In the end, we research into three relevant topics in regard to daily photos captured or shared by people, but beyond their privacy implications. In the first study, inspired by JPEG Transmorphing, we propose an animated JPEG file format, named aJPEG. aJPEG preserves its animation frames as application markers in a JPEG image and provides smaller file size and better image quality than conventional GIF. In the second study, we attempt to understand the impact of popular image manipulations applied in online photo sharing on evoked emotions of observers. The study reveals that image manipulations indeed influence people's emotion, but such impact also depends on the image content. In the last study, we employ a deep convolutional neural network (CNN), the GoogLeNet model, to perform automatic food image detection and categorization. The promising results obtained provide meaningful insights in design of automatic dietary assessment system based on multimedia techniques, e.g. image analysis

    Multimodal Biometric Systems for Personal Identification and Authentication using Machine and Deep Learning Classifiers

    Get PDF
    Multimodal biometrics, using machine and deep learning, has recently gained interest over single biometric modalities. This interest stems from the fact that this technique improves recognition and, thus, provides more security. In fact, by combining the abilities of single biometrics, the fusion of two or more biometric modalities creates a robust recognition system that is resistant to the flaws of individual modalities. However, the excellent recognition of multimodal systems depends on multiple factors, such as the fusion scheme, fusion technique, feature extraction techniques, and classification method. In machine learning, existing works generally use different algorithms for feature extraction of modalities, which makes the system more complex. On the other hand, deep learning, with its ability to extract features automatically, has made recognition more efficient and accurate. Studies deploying deep learning algorithms in multimodal biometric systems tried to find a good compromise between the false acceptance and the false rejection rates (FAR and FRR) to choose the threshold in the matching step. This manual choice is not optimal and depends on the expertise of the solution designer, hence the need to automatize this step. From this perspective, the second part of this thesis details an end-to-end CNN algorithm with an automatic matching mechanism. This thesis has conducted two studies on face and iris multimodal biometric recognition. The first study proposes a new feature extraction technique for biometric systems based on machine learning. The iris and facial features extraction is performed using the Discrete Wavelet Transform (DWT) combined with the Singular Value Decomposition (SVD). Merging the relevant characteristics of the two modalities is used to create a pattern for an individual in the dataset. The experimental results show the robustness of our proposed technique and the efficiency when using the same feature extraction technique for both modalities. The proposed method outperformed the state-of-the-art and gave an accuracy of 98.90%. The second study proposes a deep learning approach using DensNet121 and FaceNet for iris and faces multimodal recognition using feature-level fusion and a new automatic matching technique. The proposed automatic matching approach does not use the threshold to ensure a better compromise between performance and FAR and FRR errors. However, it uses a trained multilayer perceptron (MLP) model that allows people’s automatic classification into two classes: recognized and unrecognized. This platform ensures an accurate and fully automatic process of multimodal recognition. The results obtained by the DenseNet121-FaceNet model by adopting feature-level fusion and automatic matching are very satisfactory. The proposed deep learning models give 99.78% of accuracy, and 99.56% of precision, with 0.22% of FRR and without FAR errors. The proposed and developed platform solutions in this thesis were tested and vali- dated in two different case studies, the central pharmacy of Al-Asria Eye Clinic in Dubai and the Abu Dhabi Police General Headquarters (Police GHQ). The solution allows fast identification of the persons authorized to access the different rooms. It thus protects the pharmacy against any medication abuse and the red zone in the military zone against the unauthorized use of weapons

    Facial Privacy Protection in Airborne Recreational Videography

    Get PDF
    PhDCameras mounted on Micro Aerial Vehicles (MAVs) are increasingly used for recreational photography and videography. However, aerial photographs and videographs of public places often contain faces of bystanders thus leading to a perceived or actual violation of privacy. To address this issue, this thesis presents a novel privacy lter that adaptively blurs sensitive image regions and is robust against di erent privacy attacks. In particular, the thesis aims to impede face recognition from airborne cameras and explores the design space to determine when a face in an airborne image is inherently protected, that is when an individual is not recognisable. When individuals are recognisable by facial recognition algorithms, an adaptive ltering mechanism is proposed to lower the face resolution in order to preserve privacy while ensuring a minimum reduction of the delity of the image. Moreover, the lter's parameters are pseudo-randomly changed to make the applied protection robust against di erent privacy attacks. In case of videography, the lter is updated with a motion-dependent temporal smoothing to minimise icker introduced by the pseudo-random switching of the lter's parameters, without compromising on its robustness against di erent privacy attacks. To evaluate the e ciency of the proposed lter, the thesis uses a state-of-the-art face recognition algorithm and synthetically generated face data with 3D geometric image transformations that mimic faces captured from an MAV at di erent heights and pitch angles. For the videography scenario, a small video face data set is rst captured and then the proposed lter is evaluated against di erent privacy attacks and the quality of the resulting video using both objective measures and a subjective test.This work was supported in part by the research initiative Intelligent Vision Austria with funding from the Austrian Federal Ministry of Science, Research and Economy and the Austrian Institute of Technology

    A Privacy-Preserving Filter for Oblique Face Images Based on Adaptive Hopping Gaussian Mixtures

    Get PDF
    • …
    corecore