3,746 research outputs found

    A face annotation framework with partial clustering and interactive labeling

    Get PDF
    Face annotation technology is important for a photo management system. In this paper, we propose a novel interactive face annotation framework combining unsupervised and interactive learning. There are two main contributions in our framework. In the unsupervised stage, a partial clustering algorithm is proposed to find the most evident clusters instead of grouping all instances into clusters, which leads to a good initial labeling for later user interaction. In the interactive stage, an efficient labeling procedure based on minimization of both global system uncertainty and estimated number of user operations is proposed to reduce user interaction as much as possible. Experimental results show that the proposed annotation framework can significantly reduce the face annotation workload and is superior to existing solutions in the literature. 1

    Crowdsourcing in Computer Vision

    Full text link
    Computer vision systems require large amounts of manually annotated data to properly learn challenging visual concepts. Crowdsourcing platforms offer an inexpensive method to capture human knowledge and understanding, for a vast number of visual perception tasks. In this survey, we describe the types of annotations computer vision researchers have collected using crowdsourcing, and how they have ensured that this data is of high quality while annotation effort is minimized. We begin by discussing data collection on both classic (e.g., object recognition) and recent (e.g., visual story-telling) vision tasks. We then summarize key design decisions for creating effective data collection interfaces and workflows, and present strategies for intelligently selecting the most important data instances to annotate. Finally, we conclude with some thoughts on the future of crowdsourcing in computer vision.Comment: A 69-page meta review of the field, Foundations and Trends in Computer Graphics and Vision, 201

    Deep Feature Representation and Similarity Matrix based Noise Label Refinement Method for Efficient Face Annotation

    Get PDF
    Face annotation is a naming procedure that assigns the correct name to a person emerging from an image. Faces that are manually annotated by people in online applications include incorrect labels, giving rise to the issue of label ambiguity. This may lead to mislabelling in face annotation. Consequently, an efficient method is still essential to enhance the reliability of face annotation. Hence, in this work, a novel method named the Similarity Matrix-based Noise Label Refinement (SMNLR) is proposed, which effectively predicts the accurate label from the noisy labelled facial images. To enhance the performance of the proposed method, the deep learning technique named Convolutional Neural Networks (CNN) is used for feature representation. Several experiments are conducted to evaluate the effectiveness of the proposed face annotation method using the LFW, IMFDB and Yahoo datasets. The experimental results clearly illustrate the robustness of the proposed SMNLR method in dealing with noisy labelled faces

    Temporal Model Adaptation for Person Re-Identification

    Full text link
    Person re-identification is an open and challenging problem in computer vision. Majority of the efforts have been spent either to design the best feature representation or to learn the optimal matching metric. Most approaches have neglected the problem of adapting the selected features or the learned model over time. To address such a problem, we propose a temporal model adaptation scheme with human in the loop. We first introduce a similarity-dissimilarity learning method which can be trained in an incremental fashion by means of a stochastic alternating directions methods of multipliers optimization procedure. Then, to achieve temporal adaptation with limited human effort, we exploit a graph-based approach to present the user only the most informative probe-gallery matches that should be used to update the model. Results on three datasets have shown that our approach performs on par or even better than state-of-the-art approaches while reducing the manual pairwise labeling effort by about 80%

    TAG ME: An Accurate Name Tagging System for Web Facial Images using Search-Based Face Annotation

    Get PDF
    Now a day the demand of social media is increases rapidly and most of the part of social media is made up of multimedia content cognate as images, audio, video. Hence for taking this as a motivation we have proffer a framework for Name tagging or labeling For Web Facial Images, which are easily obtainable on the internet. TAG ME system does that name tagging by utilizing search-based face annotation (SBFA). Here we are going to select an image from a database which are weakly labeled on the internet and the "TAG ME" assign a correct and accurate names or tags to that facial image, for doing this a few challenges have to be faced the One exigent difficulty for search-based face annotation strategy is how to effectually conduct annotation by utilizing the list of nearly all identical face images and its labels which is weak that are habitually rowdy and deficient. In TAGME we have resolve this problem by utilizing an effectual semi supervised label refinement (SSLR) method for purify the labels of web and nonweb facial images with the help of machine learning techniques. Secondly we used convex optimization techniques to resolve learning problem and used effectual optimization algorithms to resolve the learning task which is based on the large scale integration productively. For additionally quicken the given system, finally TAGME system proposed clustering-based approximation algorithm which boost the scalability considerably

    PEANUT: A Human-AI Collaborative Tool for Annotating Audio-Visual Data

    Full text link
    Audio-visual learning seeks to enhance the computer's multi-modal perception leveraging the correlation between the auditory and visual modalities. Despite their many useful downstream tasks, such as video retrieval, AR/VR, and accessibility, the performance and adoption of existing audio-visual models have been impeded by the availability of high-quality datasets. Annotating audio-visual datasets is laborious, expensive, and time-consuming. To address this challenge, we designed and developed an efficient audio-visual annotation tool called Peanut. Peanut's human-AI collaborative pipeline separates the multi-modal task into two single-modal tasks, and utilizes state-of-the-art object detection and sound-tagging models to reduce the annotators' effort to process each frame and the number of manually-annotated frames needed. A within-subject user study with 20 participants found that Peanut can significantly accelerate the audio-visual data annotation process while maintaining high annotation accuracy.Comment: 18 pages, published in UIST'2
    corecore