250 research outputs found

    YOLO-Drone:Airborne real-time detection of dense small objects from high-altitude perspective

    Full text link
    Unmanned Aerial Vehicles (UAVs), specifically drones equipped with remote sensing object detection technology, have rapidly gained a broad spectrum of applications and emerged as one of the primary research focuses in the field of computer vision. Although UAV remote sensing systems have the ability to detect various objects, small-scale objects can be challenging to detect reliably due to factors such as object size, image degradation, and real-time limitations. To tackle these issues, a real-time object detection algorithm (YOLO-Drone) is proposed and applied to two new UAV platforms as well as a specific light source (silicon-based golden LED). YOLO-Drone presents several novelties: 1) including a new backbone Darknet59; 2) a new complex feature aggregation module MSPP-FPN that incorporated one spatial pyramid pooling and three atrous spatial pyramid pooling modules; 3) and the use of Generalized Intersection over Union (GIoU) as the loss function. To evaluate performance, two benchmark datasets, UAVDT and VisDrone, along with one homemade dataset acquired at night under silicon-based golden LEDs, are utilized. The experimental results show that, in both UAVDT and VisDrone, the proposed YOLO-Drone outperforms state-of-the-art (SOTA) object detection methods by improving the mAP of 10.13% and 8.59%, respectively. With regards to UAVDT, the YOLO-Drone exhibits both high real-time inference speed of 53 FPS and a maximum mAP of 34.04%. Notably, YOLO-Drone achieves high performance under the silicon-based golden LEDs, with a mAP of up to 87.71%, surpassing the performance of YOLO series under ordinary light sources. To conclude, the proposed YOLO-Drone is a highly effective solution for object detection in UAV applications, particularly for night detection tasks where silicon-based golden light LED technology exhibits significant superiority

    Small-Object Detection in Remote Sensing Images with End-to-End Edge-Enhanced GAN and Object Detector Network

    Full text link
    The detection performance of small objects in remote sensing images is not satisfactory compared to large objects, especially in low-resolution and noisy images. A generative adversarial network (GAN)-based model called enhanced super-resolution GAN (ESRGAN) shows remarkable image enhancement performance, but reconstructed images miss high-frequency edge information. Therefore, object detection performance degrades for small objects on recovered noisy and low-resolution remote sensing images. Inspired by the success of edge enhanced GAN (EEGAN) and ESRGAN, we apply a new edge-enhanced super-resolution GAN (EESRGAN) to improve the image quality of remote sensing images and use different detector networks in an end-to-end manner where detector loss is backpropagated into the EESRGAN to improve the detection performance. We propose an architecture with three components: ESRGAN, Edge Enhancement Network (EEN), and Detection network. We use residual-in-residual dense blocks (RRDB) for both the ESRGAN and EEN, and for the detector network, we use the faster region-based convolutional network (FRCNN) (two-stage detector) and single-shot multi-box detector (SSD) (one stage detector). Extensive experiments on a public (car overhead with context) and a self-assembled (oil and gas storage tank) satellite dataset show superior performance of our method compared to the standalone state-of-the-art object detectors.Comment: This paper contains 27 pages and accepted for publication in MDPI remote sensing journal. GitHub Repository: https://github.com/Jakaria08/EESRGAN (Implementation
    • …
    corecore