20 research outputs found

    STUDY OF FULLY-INTEGRATED LOW-DROPOUT REGULATORS

    Get PDF
    Department of Electrical EngineeringThis thesis focuses on the introduction of fully-integrated low-dropout regulators (LDOs). Recently, for the mobile and internet-of-things applications, the level of integration is getting higher. LDOs get popular in integrated circuit design including functions such as reducing switching ripples from high-efficiency regulators, cancelling spurs from other loads, and giving different supply voltages to loads. In accordance with load applications, choosing proper LDOs is important. LDOs can be classified by the types of power MOSEFT, the topologies of error amplifier, and the locations of dominant pole. Analog loads such as voltage-controlled oscillators and analog-to-digital converters need LDOs that have high power-supply-rejection-ratio (PSRR), high accuracy, and low noise. Digital loads such as DRAM and CPU need fast transient response, a wide range of load current providable LDOs. As an example, we present the design procedure of a fully-integrated LDO that obtains the desired PSRR. In analog LDOs, we discuss advanced techniques such as local positive feedback loop and zero path that can improve stability and PSRR performance. In digital LDOs, the techniques to improve transient response are introduced. In analog-digital hybrid LDOs, to achieve both fast transient and high PSRR performance in a fully-integrated chip, how to optimally combine analog and digital LDOs is considered based on the characteristics of each LDO type. The future work is extracted from the considerations and limitations of conventional techniques.clos

    Power Management ICs for Internet of Things, Energy Harvesting and Biomedical Devices

    Get PDF
    This dissertation focuses on the power management unit (PMU) and integrated circuits (ICs) for the internet of things (IoT), energy harvesting and biomedical devices. Three monolithic power harvesting methods are studied for different challenges of smart nodes of IoT networks. Firstly, we propose that an impedance tuning approach is implemented with a capacitor value modulation to eliminate the quiescent power consumption. Secondly, we develop a hill-climbing MPPT mechanism that reuses and processes the information of the hysteresis controller in the time-domain and is free of power hungry analog circuits. Furthermore, the typical power-performance tradeoff of the hysteresis controller is solved by a self-triggered one-shot mechanism. Thus, the output regulation achieves high-performance and yet low-power operations as low as 12 µW. Thirdly, we introduce a reconfigurable charge pump to provide the hybrid conversion ratios (CRs) as 1⅓× up to 8× for minimizing the charge redistribution loss. The reconfigurable feature also dynamically tunes to maximum power point tracking (MPPT) with the frequency modulation, resulting in a two-dimensional MPPT. Therefore, the voltage conversion efficiency (VCE) and the power conversion efficiency (PCE) are enhanced and flattened across a wide harvesting range as 0.45 to 3 V. In a conclusion, we successfully develop an energy harvesting method for the IoT smart nodes with lower cost, smaller size, higher conversion efficiency, and better applicability. For the biomedical devices, this dissertation presents a novel cost-effective automatic resonance tracking method with maximum power transfer (MPT) for piezoelectric transducers (PT). The proposed tracking method is based on a band-pass filter (BPF) oscillator, exploiting the PT’s intrinsic resonance point through a sensing bridge. It guarantees automatic resonance tracking and maximum electrical power converted into mechanical motion regardless of process variations and environmental interferences. Thus, the proposed BPF oscillator-based scheme was designed for an ultrasonic vessel sealing and dissecting (UVSD) system. The sealing and dissecting functions were verified experimentally in chicken tissue and glycerin. Furthermore, a combined sensing scheme circuit allows multiple surgical tissue debulking, vessel sealer and dissector (VSD) technologies to operate from the same sensing scheme board. Its advantage is that a single driver controller could be used for both systems simplifying the complexity and design cost. In a conclusion, we successfully develop an ultrasonic scalpel to replace the other electrosurgical counterparts and the conventional scalpels with lower cost and better functionality

    Digital Intensive Mixed Signal Circuits with In-situ Performance Monitors

    Get PDF
    University of Minnesota Ph.D. dissertation.November 2016. Major: Electrical/Computer Engineering. Advisor: Chris Kim. 1 computer file (PDF); x, 137 pages.Digital intensive circuit design techniques of different mixed-signal systems such as data converters, clock generators, voltage regulators etc. are gaining attention for the implementation of modern microprocessors and system-on-chips (SoCs) in order to fully utilize the benefits of CMOS technology scaling. Moreover different performance improvement schemes, for example, noise reduction, spur cancellation, linearity improvement etc. can be easily performed in digital domain. In addition to that, increasing speed and complexity of modern SoCs necessitate the requirement of in-situ measurement schemes, primarily for high volume testing. In-situ measurements not only obviate the need for expensive measurement equipments and probing techniques, but also reduce the test time significantly when a large number of chips are required to be tested. Several digital intensive circuit design techniques are proposed in this dissertation along with different in-situ performance monitors for a variety of mixed signal systems. First, a novel beat frequency quantization technique is proposed in a two-step VCO quantizer based ADC implementation for direct digital conversion of low amplitude bio- potential signals. By direct conversion, it alleviates the requirement of the area and power consuming analog-frontend (AFE) used in a conventional ADC designs. This prototype design is realized in a 65nm CMOS technology. Measured SNDR is 44.5dB from a 10mVpp, 300Hz signal and power consumption is only 38μW. Next, three different clock generation circuits, a phase-locked loop (PLL), a multiplying delay-locked loop (MDLL) and a frequency-locked loop (FLL) are presented. First a 0.4-to-1.6GHz sub-sampling fractional-N all digital PLL architecture is discussed that utilizes a D-flip-flop as a digital sub-sampler. Measurement results from a 65nm CMOS test-chip shows 5dB lower phase noise at 100KHz offset frequency, compared to a conventional architecture. The Digital PLL (DPLL) architecture is further extended for a digital MDLL implementation in order to suppress the VCO phase noise beyond the DPLL bandwidth. A zero-offset aperture phase detector (APD) and a digital- to-time converter (DTC) are employed for static phase-offset (SPO) cancellation. A unique in-situ detection circuitry achieves a high resolution SPO measurement in time domain. A 65nm test-chip shows 0.2-to-1.45GHz output frequency range while reducing the phase-noise by 9dB compared to a DPLL. Next, a frequency-to-current converter (FTC) based fractional FLL is proposed for a low accuracy clock generation in an extremely low area for IoT application. High density deep-trench capacitors are used for area reduction. The test-chip is fabricated in a 32nm SOI technology that takes only 0.0054mm2 active area. A high-resolution in-situ period jitter measurement block is also incorporated in this design. Finally, a time based digital low dropout (DLDO) regulator architecture is proposed for fine grain power delivery over a wide load current dynamic range and input/output voltage in order to facilitate dynamic voltage and frequency scaling (DVFS). High- resolution beat frequency detector dynamically adjusts the loop sampling frequency for ripple and settling time reduction due to load transients. A fixed steady-state voltage offset provides inherent active voltage positioning (AVP) for ripple reduction. Circuit simulations in a 65nm technology show more than 90% current efficiency for 100X load current variation, while it can operate for an input voltage range of 0.6V – 1.2V

    Qualitative Data Augmentation for Performance Prediction in VLSI circuits

    Full text link
    Various studies have shown the advantages of using Machine Learning (ML) techniques for analog and digital IC design automation and optimization. Data scarcity is still an issue for electronic designs, while training highly accurate ML models. This work proposes generating and evaluating artificial data using generative adversarial networks (GANs) for circuit data to aid and improve the accuracy of ML models trained with a small training data set. The training data is obtained by various simulations in the Cadence Virtuoso, HSPICE, and Microcap design environment with TSMC 180nm and 22nm CMOS technology nodes. The artificial data is generated and tested for an appropriate set of analog and digital circuits. The experimental results show that the proposed artificial data generation significantly improves ML models and reduces the percentage error by more than 50\% of the original percentage error, which were previously trained with insufficient data. Furthermore, this research aims to contribute to the extensive application of AI/ML in the field of VLSI design and technology by relieving the training data availability-related challenges.Comment: 14 pages, 13 figure

    Power-Efficient and High-Performance Cicruit Techniques for On-Chip Voltage Regulation and Low-Voltage Filtering

    Get PDF
    This dissertation focuses on two projects. The first one is a power supply rejection (PSR) enhanced with fast settling time (TS) bulk-driven feedforward (BDFF) capacitor-less (CL) low-dropout (LDO) regulator. The second project is a high bandwidth (BW) power adjustable low-voltage (LV) active-RC 4th -order Butterworth low pass filter (LPF). As technology improves, faster and more accurate LDOs with high PSR are going to be required for future on-chip applications and systems.The proposed BDFF CL-LDO will accomplish an improved PSR without degrading TS. This would be achieved by injecting supply noise through the pass device’s bulk terminal in order to cancel the supply noise at the output. The supply injection will be achieved by creating a feedforward path, which compared to feedback paths, that doesn’t degrade stability and therefore allows for faster dynamic performance. A high gain control loop would be used to maintain a high accuracy and dc performance, such as line/load regulation. The proposed CL-LDO will target a PSR better than – 90 dB at low frequencies and – 60 dB at 1 MHz for 50 mA of load current (IvL). The CL-LDO will target a loop gain higher than 90 dB, leading to an improved line and load regulation, and unity-gain frequency (UGF) higher than 20 MHz, which will allow a TS faster than 500 ns. The CL-LDO is going to be fabricated in a CMOS 130 nm technology; consume a quiescent current (IQ) of less than 50 μA; for a dropout voltage of 200 mV and an IvL of 50 mA. As technology scales down, speed and performance requirements increase for on-chip communication systems that reflect the current demand for high speed data-oriented applications. However, in small technologies, it becomes harder to achieve high gain and high speed at the same time because the supply voltage (VvDvD) decreases leaving no room for conventional high gain CMOS structures. The proposed active-RC LPF will accomplish a LV high BW operation that would allow such disadvantages to be overcome. The LPF will be implemented using an active RC structure that allows for the high linearity such communication systems demand. In addition, built-in BW and power configurability would address the demands for increased flexibility usually required in such systems. The proposed LV LPF will target a configurable cut-off frequency (ƒо) of 20/40/80/160 MHz with tuning capabilities and power adjustability for each ƒо. The filter will be fabricated in a CMOS 130 nm technology. The filter characteristics are as following: 4th -order, active-RC, LPF, Butterworth response, VDD = 0.6 V, THD higher than 40 dB and a third-order input intercept point (IIP3) higher than 10 dBm

    Low Power DC-DC Converters and a Low Quiescent Power High PSRR Class-D Audio Amplifier

    Get PDF
    High-performance DC-DC voltage converters and high-efficient class-D audio amplifiers are required to extend battery life and reduce cost in portable electronics. This dissertation focuses on new system architectures and design techniques to reduce area and minimize quiescent power while achieving high performance. Experimental results from prototype circuits to verify theory are shown. Firstly, basics on low drop-out (LDO) voltage regulators are provided. Demand for system-on-chip solutions has increased the interest in LDO voltage regulators that do not require a bulky off-chip capacitor to achieve stability, also called capacitor- less LDO (CL-LDO) regulators. Several architectures have been proposed; however, comparing these reported architectures proves difficult, as each has a distinct process technology and specifications. This dissertation compares CL-LDOs in a unified manner. Five CL-LDO regulator topologies were designed, fabricated, and tested under common design conditions. Secondly, fundamentals on DC-DC buck converters are presented and area reduction techniques for the external output filter, power stage, and compensator are proposed. A fully integrated buck converter using standard CMOS technology is presented. The external output filter has been fully-integrated by increasing the switching frequency up to 45 MHz. Moreover, a monolithic single-input dual-output buck converter is proposed. This architecture implements only three switches instead of the four switches used in conventional solutions, thus potentially reducing area in the power stage through proper design of the power switches. Lastly, a monolithic PWM voltage mode buck converter with compact Type-III compensation is proposed. This compensation scheme employs a combination of Gm-RC and Active-RC techniques to reduce the area of the compensator, while maintaining low quiescent power consumption and fast transient response. The proposed compensator reduces area by more than 45% when compared to an equivalent conventional Type-III compensator. Finally, basics on class-D audio amplifiers are presented and a clock-free current controlled class-D audio amplifier using integral sliding mode control is proposed. The proposed amplifier achieves up to 82 dB of power supply rejection ratio and a total harmonic distortion plus noise as low as 0.02%. The IC prototype’s controller consumes 30% less power than those featured in recently published works

    Wireless power and data transmission to high-performance implantable medical devices

    Get PDF
    Novel techniques for high-performance wireless power transmission and data interfacing with implantable medical devices (IMDs) were proposed. Several system- and circuit-level techniques were developed towards the design of a novel wireless data and power transmission link for a multi-channel inductively-powered wireless implantable neural-recording and stimulation system. Such wireless data and power transmission techniques have promising prospects for use in IMDs such as biosensors and neural recording/stimulation devices, neural interfacing experiments in enriched environments, radio-frequency identification (RFID), smartcards, near-field communication (NFC), wireless sensors, and charging mobile devices and electric vehicles. The contributions in wireless power transfer are the development of an RFID-based closed-loop power transmission system, a high-performance 3-coil link with optimal design procedure, circuit-based theoretical foundation for magnetic-resonance-based power transmission using multiple coils, a figure-of-merit for designing high-performance inductive links, a low-power and adaptive power management and data transceiver ASIC to be used as a general-purpose power module for wireless electrophysiology experiments, and a Q-modulated inductive link for automatic load matching. In wireless data transfer, the contributions are the development of a new modulation technique called pulse-delay modulation for low-power and wideband near-field data communication and a pulse-width-modulation impulse-radio ultra-wideband transceiver for low-power and wideband far-field data transmission.Ph.D

    Progetto di un regolatore di tensione Low-Dropout in tecnologia CMOS a micropotenza

    Get PDF
    La gestione energetica è diventata un aspetto fondamentale di qualsiasi sistema elettronico in quanto è necessario ottimizzare l’utilizzo delle risorse energetiche disponibili. Tra gli elementi chiave della gestione energetica i regolatori di tensione svolgono un ruolo cruciale. L’obiettivo dei regolatori di tensione è quello di garantire una tensione stabile d’uscita indipendente dalle variazioni della tensione di alimentazione, di temperatura, dalle condizioni di carico e dai transitori. I regolatori di tensione Low Dropout (LDO) sono in grado di mantenere una tensione d’uscita stabile anche con una differenza molto bassa rispetto alla tensione di alimentazione. Il funzionamento di questi regolatori si basa sulla dissipazione di energia attraverso un pass transistor. Se la caduta di tensione è molto bassa sul pass transistor è possibile ottenere un’efficienza molto elevata. Oltre a questo, un altro fattore molto importante in termini di efficienza è dato dalla bassa corrente di riposo del regolatore. Questi aspetti rendono fondamentale la progettazione di circuiti integrati a micro-potenza. Ovviamente sono presenti dei trade-off tra efficienza e prestazioni del circuito. L’obiettivo principale di questa tesi è l’analisi e il progetto di un regolatore di tensione Low-Dropout a bassa corrente di risposo. Il regolatore deve essere in grado di erogare una tensione d’uscita stabile di 0.6V con una tensione di alimentazione di 1.2V e fluttuazioni del ± 10%. Inoltre, a fronte di una corrente di carico impulsiva con variazioni di 60nA la tensione di uscita deve assestarsi al valore desiderato in brevi istanti di tempo producendo overshoot/undershoot inferiori a 20mV. Oltre a queste specifiche il regolatore deve avere una corrente di riposo limitata non superiore a 100nA. È stato quindi realizzato il regolatore LDO presentato in questo elaborato che utilizza un pass transistor di tipo PMOS e un amplificatore differenziale a singolo stadio con MOS polarizzati sottosoglia

    Interface Circuits for Microsensor Integrated Systems

    Get PDF
    ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms. [Recent advances in sensing technologies, especially those for Microsensor Integrated Systems, have led to several new commercial applications. Among these, low voltage and low power circuit architectures have gained growing attention, being suitable for portable long battery life devices. The aim is to improve the performances of actual interface circuits and systems, both in terms of voltage mode and current mode, in order to overcome the potential problems due to technology scaling and different technology integrations. Related problems, especially those concerning parasitics, lead to a severe interface design attention, especially concerning the analog front-end and novel and smart architecture must be explored and tested, both at simulation and prototype level. Moreover, the growing demand for autonomous systems gets even harder the interface design due to the need of energy-aware cost-effective circuit interfaces integrating, where possible, energy harvesting solutions. The objective of this Special Issue is to explore the potential solutions to overcome actual limitations in sensor interface circuits and systems, especially those for low voltage and low power Microsensor Integrated Systems. The present Special Issue aims to present and highlight the advances and the latest novel and emergent results on this topic, showing best practices, implementations and applications. The Guest Editors invite to submit original research contributions dealing with sensor interfacing related to this specific topic. Additionally, application oriented and review papers are encouraged.
    corecore