258,065 research outputs found

    Context-Aware Sentiment Analysis using Tweet Expansion Method

    Get PDF
    The large source of information space produced by the plethora of social media platforms in general and microblogging in particular has spawned a slew of new applications and prompted the rise and expansion of sentiment analysis research. We propose a sentiment analysis technique that identifies the main parts to describe tweet intent and also enriches them with relevant words, phrases, or even inferred variables. We followed a state-of-the-art hybrid deep learning model to combine Convolutional Neural Network (CNN) and the Long Short-Term Memory network (LSTM) to classify tweet data based on their polarity. To preserve the latent relationships between tweet terms and their expanded representation, sentence encoding and contextualized word embeddings are utilized. To investigate the performance of tweet embeddings on the sentiment analysis task, we tested several context-free models (Word2Vec, Sentence2Vec, Glove, and FastText), a dynamic embedding model (BERT), deep contextualized word representations (ELMo), and an entity-based model (Wikipedia). The proposed method and results prove that text enrichment improves the accuracy of sentiment polarity classification with a notable percentage

    Context-Aware Sentiment Analysis using Tweet Expansion Method

    Get PDF
    The large source of information space produced by the plethora of social media platforms in general and microblogging in particular has spawned a slew of new applications and prompted the rise and expansion of sentiment analysis research. We propose a sentiment analysis technique that identifies the main parts to describe tweet intent and also enriches them with relevant words, phrases, or even inferred variables. We followed a state-of-the-art hybrid deep learning model to combine Convolutional Neural Network (CNN) and the Long Short-Term Memory network (LSTM) to classify tweet data based on their polarity. To preserve the latent relationships between tweet terms and their expanded representation, sentence encoding and contextualized word embeddings are utilized. To investigate the performance of tweet embeddings on the sentiment analysis task, we tested several context-free models (Word2Vec, Sentence2Vec, Glove, and FastText), a dynamic embedding model (BERT), deep contextualized word representations (ELMo), and an entity-based model (Wikipedia). The proposed method and results prove that text enrichment improves the accuracy of sentiment polarity classification with a notable percentage

    Enhancing natural language understanding using meaning representation and deep learning

    Get PDF
    Natural Language Understanding (NLU) is one of the complex tasks in artificial intelligence. Machine learning was introduced to address the complex and dynamic nature of natural language. Deep learning gained popularity within the NLU community due to its capability of learning features directly from data, as well as learning from the dynamic nature of natural language. Furthermore, deep learning has shown to be able to learn the hidden feature(s) automatically and outperform most of the other machine learning approaches for NLU. Deep learning models require natural language inputs to be converted to vectors (word embedding). Word2Vec and GloVe are word embeddings which are designed to capture the analogy context-based statistics and provide lexical relations on words. Using the context-based statistical approach does not capture the prior knowledge required to understand language combined with words. Although a deep learning model receives word embedding, language understanding requires Reasoning, Attention and Memory (RAM). RAM are key factors in understanding language. Current deep learning models focus either on reasoning, attention or memory. In order to properly understand a language however, all three factors of RAM should be considered. Also, a language normally has a long sequence. This long sequence creates dependencies which are required in order to understand a language. However, current deep learning models, which are developed to hold longer sequences, either forget or get affected by the vanishing or exploding gradient descent. In this thesis, these three main areas are of focus. A word embedding technique, which integrates analogy context-based statistical and semantic relationships, as well as extracts from a knowledge base to hold enhanced meaning representation, is introduced. Also, a Long Short-Term Reinforced Memory (LSTRM) network is introduced. This addresses RAM and is validated by testing on question answering data sets which require RAM. Finally, a Long Term Memory Network (LTM) is introduced to address language modelling. Good language modelling requires learning from long sequences. Therefore, this thesis demonstrates that integrating semantic knowledge and a knowledge base generates enhanced meaning and deep learning models that are capable of achieving RAM and long-term dependencies so as to improve the capability of NLU

    Syntax-Aware Multi-Sense Word Embeddings for Deep Compositional Models of Meaning

    Full text link
    Deep compositional models of meaning acting on distributional representations of words in order to produce vectors of larger text constituents are evolving to a popular area of NLP research. We detail a compositional distributional framework based on a rich form of word embeddings that aims at facilitating the interactions between words in the context of a sentence. Embeddings and composition layers are jointly learned against a generic objective that enhances the vectors with syntactic information from the surrounding context. Furthermore, each word is associated with a number of senses, the most plausible of which is selected dynamically during the composition process. We evaluate the produced vectors qualitatively and quantitatively with positive results. At the sentence level, the effectiveness of the framework is demonstrated on the MSRPar task, for which we report results within the state-of-the-art range.Comment: Accepted for presentation at EMNLP 201
    • …
    corecore