49 research outputs found

    Generating CCG Categories

    Full text link
    Previous CCG supertaggers usually predict categories using multi-class classification. Despite their simplicity, internal structures of categories are usually ignored. The rich semantics inside these structures may help us to better handle relations among categories and bring more robustness into existing supertaggers. In this work, we propose to generate categories rather than classify them: each category is decomposed into a sequence of smaller atomic tags, and the tagger aims to generate the correct sequence. We show that with this finer view on categories, annotations of different categories could be shared and interactions with sentence contexts could be enhanced. The proposed category generator is able to achieve state-of-the-art tagging (95.5% accuracy) and parsing (89.8% labeled F1) performances on the standard CCGBank. Furthermore, its performances on infrequent (even unseen) categories, out-of-domain texts and low resource language give promising results on introducing generation models to the general CCG analyses.Comment: Accepted by AAAI 202

    Improving a supervised CCG parser

    Get PDF
    The central topic of this thesis is the task of syntactic parsing with Combinatory Categorial Grammar (CCG). We focus on pipeline approaches that have allowed researchers to develop efficient and accurate parsers trained on articles taken from the Wall Street Journal (WSJ). We present three approaches to improving the state-of-the-art in CCG parsing. First, we test novel supertagger-parser combinations to identify the parsing models and algorithms that benefit the most from recent gains in supertagger accuracy. Second, we attempt to lessen the future burdens of assembling a state-of-the-art CCG parsing pipeline by showing that a part-of-speech (POS) tagger is not required to achieve optimal performance. Finally, we discuss the deficiencies of current parsing algorithms and propose a solution that promises improvements in accuracy – particularly for difficult dependencies – while preserving efficiency and optimality guarantees
    corecore