1,125 research outputs found

    Towards Viable Large Scale Heterogeneous Wireless Networks

    Get PDF
    We explore radio resource allocation and management issues related to a large-scale heterogeneous (hetnet) wireless system made up of several Radio Access Technologies (RATs) that collectively provide a unified wireless network to a diverse set of users through co-ordination managed by a centralized Global Resource Controller (GRC). We incorporate 3G cellular technologies HSPA and EVDO, 4G cellular technologies WiMAX and LTE, and WLAN technology Wi-Fi as the RATs in our hetnet wireless system. We assume that the user devices are either multi-modal or have one or more reconfigurable radios which makes it possible for each device to use any available RAT at any given time subject to resource-sharing agreements. For such a hetnet system where resource allocation is coordinated at a global level, characterizing the network performance in terms of various conflicting network efficiency objectives that takes costs associated with a network re-association operation into account largely remains an open problem. Also, all the studies to-date that try to characterize the network performance of a hetnet system do not account for RAT-specific implementation details and the management overhead associated with setting up a centralized control. We study the radio resource allocation problem and the implementation/management overhead issues associated with a hetnet system in two research phases. In the first phase, we develop cost models associated with network re-association in terms of increased power consumption and communication downtime taking into account various user device assumptions. Using these cost models in our problem formulations, the first phase focuses on resource allocation strategies where we use a high-level system modeling approach to study the achievable performance in terms of conflicting network efficiency measures of spectral efficiency, overall power consumption, and instantaneous and long-term fairness for each user in the hetnet system. Our main result from this phase of study suggests that the gain in spectral efficiency due to multi-access network diversity results in a tremendous increase in overall power consumption due to frequent re-associations required by user devices. We then develop a utility function-based optimization algorithm to characterize and achieve a desired tradeoff in terms of all four network efficiency measures of spectral efficiency, overall power consumption and instantaneous and long-term fairness. We show an increase in a multi-attribute system utility measure of up to 56.7% for our algorithm compared to other widely studied resource allocation algorithms including max-sum rate, proportional fairness, max-min fairness and min power. The second phase of our research study focuses on practical implementation issues including the overhead required to implement a centralized GRC solution in a hetnet system. Through detailed protocol level simulations performed in ns-2, we show an increase in spectral efficiency of up to 99% and an increase in instantaneous fairness of up to 28.5% for two sort-based user device-to-Access Point (AP)/Base Station (BS) association algorithms implemented at the GRC that aim to maximize system spectral efficiency and instantaneous fairness performance metrics respectively compared to a distributed solution where each user makes his/her own association decision. The efficiency increase for each respective attribute again results in a tremendous increase in power consumption of up to 650% and 794% for each respective algorithm implemented at the GRC compared to a distributed solution because of frequent re-associations

    Pervasive handheld computing systems

    Get PDF
    The technological role of handheld devices is fundamentally changing. Portable computers were traditionally application specific. They were designed and optimised to deliver a specific task. However, it is now commonly acknowledged that future handheld devices need to be multi-functional and need to be capable of executing a range of high-performance applications. This thesis has coined the term pervasive handheld computing systems to refer to this type of mobile device. Portable computers are faced with a number of constraints in trying to meet these objectives. They are physically constrained by their size, their computational power, their memory resources, their power usage, and their networking ability. These constraints challenge pervasive handheld computing systems in achieving their multi-functional and high-performance requirements. This thesis proposes a two-pronged methodology to enable pervasive handheld computing systems meet their future objectives. The methodology is a fusion of two independent and yet complementary concepts. The first step utilises reconfigurable technology to enhance the physical hardware resources within the environment of a handheld device. This approach recognises that reconfigurable computing has the potential to dynamically increase the system functionality and versatility of a handheld device without major loss in performance. The second step of the methodology incorporates agent-based middleware protocols to support handheld devices to effectively manage and utilise these reconfigurable hardware resources within their environment. The thesis asserts the combined characteristics of reconfigurable computing and agent technology can meet the objectives of pervasive handheld computing systems

    Models and Protocols for Resource Optimization in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks are built on a mix of fixed and mobile nodes interconnected via wireless links to form a multihop ad hoc network. An emerging application area for wireless mesh networks is their evolution into a converged infrastructure used to share and extend, to mobile users, the wireless Internet connectivity of sparsely deployed fixed lines with heterogeneous capacity, ranging from ISP-owned broadband links to subscriber owned low-speed connections. In this thesis we address different key research issues for this networking scenario. First, we propose an analytical predictive tool, developing a queuing network model capable of predicting the network capacity and we use it in a load aware routing protocol in order to provide, to the end users, a quality of service based on the throughput. We then extend the queuing network model and introduce a multi-class queuing network model to predict analytically the average end-to-end packet delay of the traffic flows among the mobile end users and the Internet. The analytical models are validated against simulation. Second, we propose an address auto-configuration solution to extend the coverage of a wireless mesh network by interconnecting it to a mobile ad hoc network in a transparent way for the infrastructure network (i.e., the legacy Internet interconnected to the wireless mesh network). Third, we implement two real testbed prototypes of the proposed solutions as a proof-of-concept, both for the load aware routing protocol and the auto-configuration protocol. Finally we discuss the issues related to the adoption of ad hoc networking technologies to address the fragility of our communication infrastructure and to build the next generation of dependable, secure and rapidly deployable communications infrastructures

    Supporting Context-Aware Application Development in Ad Hoc Mobile Networks

    Get PDF
    Some of the most dynamic systems being built today consist of physically mobile hosts and logically mobile agents. Such systems exhibit frequent configuration changes and a great deal of resource variability. Applications executing under these circumstances need to react continuously and rapidly to changes in operating conditions and must adapt their behavior accordingly. Applications with these capabilities are referred to as context-aware. Much of the current work on context-aware computing relies on information directly available to an application via context sensors on its local host, e.g., user profile, host location, time of day, resource availability, and quality of service measurements. The work reported in this dissertation starts by building a new perspective on context-awareness, in which the context includes, in principle, any information available in the ad hoc network but is restricted, in practice, to specific projections of the overall context. This work reports on the design and implementation of a middleware model that brings this notion of context to the application programmer. Another important aspect of the software engineering process is the ability to reason formally about the programs we create. This dissertation details initial steps to create formal reasoning mechanisms dedicated to the needs of context-aware applications. The results of this work simplify application development in ad hoc mobile networks from a design and implementation perspective and through formal reasoning

    Personalized City Tours - An Extension of the OGC OpenLocation Specification

    Get PDF
    A business trip to London last month , a day visit in Cologne next saturday and romantic weekend in Paris in autumn – this example exhibits one of the central characteristics of today’s tourism. People in the western hemisphere take much pleasure in frequent and repeated short term visits of cities. Every city visitor faces the general problems of where to go and what to see in the diverse microcosm of a metropolis. This thesis presents a framework for the generation of personalized city tours - as extension of the Open Location Specification of the Open Geospatial Consortium. It is founded on context-awareness and personalization while at the same time proposing a combined approach to allow for adaption to the user. This framework considers TimeGeography and its algorithmic implementations to be able to cope with spatio-temporal constraints of a city tour. Traveling salesmen problems - for which a heuristic approache is proposed – are subjacent to the tour generation. To meet the requirements of today’s distributed and heterogeneous computing environments, the tour framework comprises individual services that expose standard-compliant interfaces and allow for integration in service oriented architectures

    IST-2000-30148 I-METRA: D6.1 Implications in re-configurable systems beyond 3G (Part 1)

    Get PDF
    In this activity MIMO HSDPA is evaluated as the UMTS evolution that could allow a combination of high bit rate services, coverage and mobility with a good trade-off between cost and performance. This evaluation requires the definition of an objective framework for comparison between competing air interface technologies for Systems beyond 3G, and should be carried out in cooperation with other IST projects. The deliverable is complemented by analytically assessing channel capacity in flat Rician- and Rayleigh fading when ideal proportional fast scheduling, optimal rate adaptation, and various transmit diversity techniques are used.Preprin

    A user-centric approach for personalized service provisioning in pervasive environments

    Get PDF
    Published version of an article published in Wireless Personal Communications (2011). Also available from the publisher at http://dx.doi.org/10.1007/s11277-011-0387-3The vision of pervasive environments is being realized more than ever with the proliferation of services and computing resources located in our surrounding environments. Identifying those services that deserve the attention of the user is becoming an increasingly-challenging task. In this paper, we present an adaptive multi-criteria decision making mechanism for recommending relevant services to the mobile user. In this context, "Relevance" is determined based on a user-centric approach that combines both the reputation of the service, the user's current context, the user's profile, as well as a record of the history of recommendations. Our decision making mechanism is adaptive in the sense that it is able to cope with users' contexts that are changing and drifts in the users' interests, while it simultaneously can track the reputations of services, and suppress repetitive notifications based on the history of the recommendations. The paper also includes some brief but comprehensive results concerning the task of tracking service reputations by analyzing and comprehending Word-of-Mouth communications, as well as by suppressing repetitive notifications. We believe that our architecture presents a significant contribution towards realizing intelligent and personalized service provisioning in pervasive environments

    SCALABLE AND EFFICIENT VERTICAL HANDOVER DECISION ALGORITHMS IN VEHICULAR NETWORK CONTEXTS

    Full text link
    A finales de los años noventa, y al comienzo del nuevo milenio, las redes inalámbricas han evolucionado bastante, pasando de ser sólo una tecnología prometedora para convertirse en un requisito para las actividades cotidianas en las sociedades desarrolladas. La infraestructura de transporte también ha evolucionado, ofreciendo comunicación a bordo para mejorar la seguridad vial y el acceso a contenidos de información y entretenimiento. Los requisitos de los usuarios finales se han hecho dependientes de la tecnología, lo que significa que sus necesidades de conectividad han aumentado debido a los diversos requisitos de las aplicaciones que se ejecutan en sus dispositivos móviles, tales como tabletas, teléfonos inteligentes, ordenadores portátiles o incluso ordenadores de abordo (On-Board Units (OBUs)) dentro de los vehículos. Para cumplir con dichos requisitos de conectividad, y teniendo en cuenta las diferentes redes inalámbricas disponibles, es necesario adoptar técnicas de Vertical Handover (VHO) para cambiar de red de forma transparente y sin necesidad de intervención del usuario. El objetivo de esta tesis es desarrollar algoritmos de decisión (Vertical Handover Decision Algorithms (VHDAs)) eficientes y escalables, optimizados para el contexto de las redes vehiculares. En ese sentido se ha propuesto, desarrollado y probado diferentes algoritmos de decisión basados en la infraestructura disponible en las actuales, y probablemente en las futuras, redes inalámbricas y redes vehiculares. Para ello se han combinado diferentes técnicas, métodos computacionales y modelos matemáticos, con el fin de garantizar una conectividad apropiada, y realizando el handover hacia las redes más adecuadas de manera a cumplir tanto con los requisitos de los usuarios como los requisitos de las aplicaciones. Con el fin de evaluar el contexto, se han utilizado diferentes herramientas para obtener información variada, como la disponibilidad de la red, el estado de la red, la geolocalizaciónMárquez Barja, JM. (2012). SCALABLE AND EFFICIENT VERTICAL HANDOVER DECISION ALGORITHMS IN VEHICULAR NETWORK CONTEXTS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17869Palanci

    Mobility modeling and management for next generation wireless networks

    Get PDF
    Mobility modeling and management in wireless networks are the set of tasks performed in order to model motion patterns, predict trajectories, get information on mobiles\u27 whereabouts and to make use of this information in handoff, routing, location management, resource allocation and other functions. In the literature, the speed of mobile is often and misleadingly referred to as the level of mobility, such as high or low mobility. This dissertation presents an information theoretic approach to mobility modeling and management, in which mobility is considered as a measure of uncertainty in mobile\u27s trajectory, that is, the mobility is low if the trajectory of a mobile is highly predictable even if the mobile is moving with high speed. On the other hand, the mobility is high if the trajectory of the mobile is highly erratic. Based on this mobility modeling concept, we classify mobiles into predictable and non-predictable mobility classes and optimize network operations for each mobility class. The dynamic mobility classification technique is applied to various mobility related issues of the next generation wireless networks such as location management, location-based services, and energy efficient routing in multihop cellular networks
    corecore