695 research outputs found

    A connection between circular colorings and periodic schedules

    Get PDF
    AbstractWe show that there is a curious connection between circular colorings of edge-weighted digraphs and periodic schedules of timed marked graphs. Circular coloring of an edge-weighted digraph was introduced by Mohar [B. Mohar, Circular colorings of edge-weighted graphs, J. Graph Theory 43 (2003) 107–116]. This kind of coloring is a very natural generalization of several well-known graph coloring problems including the usual circular coloring [X. Zhu, Circular chromatic number: A survey, Discrete Math. 229 (2001) 371–410] and the circular coloring of vertex-weighted graphs [W. Deuber, X. Zhu, Circular coloring of weighted graphs, J. Graph Theory 23 (1996) 365–376]. Timed marked graphs G→ [R.M. Karp, R.E. Miller, Properties of a model for parallel computations: Determinancy, termination, queuing, SIAM J. Appl. Math. 14 (1966) 1390–1411] are used, in computer science, to model the data movement in parallel computations, where a vertex represents a task, an arc uv with weight cuv represents a data channel with communication cost, and tokens on arc uv represent the input data of task vertex v. Dynamically, if vertex u operates at time t, then u removes one token from each of its in-arc; if uv is an out-arc of u, then at time t+cuv vertex u places one token on arc uv. Computer scientists are interested in designing, for each vertex u, a sequence of time instants {fu(1),fu(2),fu(3),…} such that vertex u starts its kth operation at time fu(k) and each in-arc of u contains at least one token at that time. The set of functions {fu:u∈V(G→)} is called a schedule of G→. Computer scientists are particularly interested in periodic schedules. Given a timed marked graph G→, they ask if there exist a period p>0 and real numbers xu such that G→ has a periodic schedule of the form fu(k)=xu+p(k−1) for each vertex u and any positive integer k. In this note we demonstrate an unexpected connection between circular colorings and periodic schedules. The aim of this note is to provide a possibility of translating problems and methods from one area of graph coloring to another area of computer science

    Distance-two labelings of digraphs

    Full text link
    For positive integers jkj\ge k, an L(j,k)L(j,k)-labeling of a digraph DD is a function ff from V(D)V(D) into the set of nonnegative integers such that f(x)f(y)j|f(x)-f(y)|\ge j if xx is adjacent to yy in DD and f(x)f(y)k|f(x)-f(y)|\ge k if xx is of distant two to yy in DD. Elements of the image of ff are called labels. The L(j,k)L(j,k)-labeling problem is to determine the λj,k\vec{\lambda}_{j,k}-number λj,k(D)\vec{\lambda}_{j,k}(D) of a digraph DD, which is the minimum of the maximum label used in an L(j,k)L(j,k)-labeling of DD. This paper studies λj,k\vec{\lambda}_{j,k}- numbers of digraphs. In particular, we determine λj,k\vec{\lambda}_{j,k}- numbers of digraphs whose longest dipath is of length at most 2, and λj,k\vec{\lambda}_{j,k}-numbers of ditrees having dipaths of length 4. We also give bounds for λj,k\vec{\lambda}_{j,k}-numbers of bipartite digraphs whose longest dipath is of length 3. Finally, we present a linear-time algorithm for determining λj,1\vec{\lambda}_{j,1}-numbers of ditrees whose longest dipath is of length 3.Comment: 12 pages; presented in SIAM Coference on Discrete Mathematics, June 13-16, 2004, Loews Vanderbilt Plaza Hotel, Nashville, TN, US

    The Weisfeiler-Leman Dimension of Planar Graphs is at most 3

    Full text link
    We prove that the Weisfeiler-Leman (WL) dimension of the class of all finite planar graphs is at most 3. In particular, every finite planar graph is definable in first-order logic with counting using at most 4 variables. The previously best known upper bounds for the dimension and number of variables were 14 and 15, respectively. First we show that, for dimension 3 and higher, the WL-algorithm correctly tests isomorphism of graphs in a minor-closed class whenever it determines the orbits of the automorphism group of any arc-colored 3-connected graph belonging to this class. Then we prove that, apart from several exceptional graphs (which have WL-dimension at most 2), the individualization of two correctly chosen vertices of a colored 3-connected planar graph followed by the 1-dimensional WL-algorithm produces the discrete vertex partition. This implies that the 3-dimensional WL-algorithm determines the orbits of a colored 3-connected planar graph. As a byproduct of the proof, we get a classification of the 3-connected planar graphs with fixing number 3.Comment: 34 pages, 3 figures, extended version of LICS 2017 pape

    Exact Algorithm for Graph Homomorphism and Locally Injective Graph Homomorphism

    Full text link
    For graphs GG and HH, a homomorphism from GG to HH is a function φ ⁣:V(G)V(H)\varphi \colon V(G) \to V(H), which maps vertices adjacent in GG to adjacent vertices of HH. A homomorphism is locally injective if no two vertices with a common neighbor are mapped to a single vertex in HH. Many cases of graph homomorphism and locally injective graph homomorphism are NP-complete, so there is little hope to design polynomial-time algorithms for them. In this paper we present an algorithm for graph homomorphism and locally injective homomorphism working in time O((b+2)V(G))\mathcal{O}^*((b + 2)^{|V(G)|}), where bb is the bandwidth of the complement of HH

    Dynamic Chromatic Number of Regular Graphs

    Full text link
    A dynamic coloring of a graph GG is a proper coloring such that for every vertex vV(G)v\in V(G) of degree at least 2, the neighbors of vv receive at least 2 colors. It was conjectured [B. Montgomery. {\em Dynamic coloring of graphs}. PhD thesis, West Virginia University, 2001.] that if GG is a kk-regular graph, then χ2(G)χ(G)2\chi_2(G)-\chi(G)\leq 2. In this paper, we prove that if GG is a kk-regular graph with χ(G)4\chi(G)\geq 4, then χ2(G)χ(G)+α(G2)\chi_2(G)\leq \chi(G)+\alpha(G^2). It confirms the conjecture for all regular graph GG with diameter at most 2 and χ(G)4\chi(G)\geq 4. In fact, it shows that χ2(G)χ(G)1\chi_2(G)-\chi(G)\leq 1 provided that GG has diameter at most 2 and χ(G)4\chi(G)\geq 4. Moreover, we show that for any kk-regular graph GG, χ2(G)χ(G)6lnk+2\chi_2(G)-\chi(G)\leq 6\ln k+2. Also, we show that for any nn there exists a regular graph GG whose chromatic number is nn and χ2(G)χ(G)1\chi_2(G)-\chi(G)\geq 1. This result gives a negative answer to a conjecture of [A. Ahadi, S. Akbari, A. Dehghan, and M. Ghanbari. \newblock On the difference between chromatic number and dynamic chromatic number of graphs. \newblock {\em Discrete Math.}, In press].Comment: 8 page
    corecore