42 research outputs found

    Distributed Clustering Based on Node Density and Distance in Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) are special type of network with sensing and monitoring the physical parameters with the property of autonomous in nature. To implement this autonomy and network management the common method used is hierarchical clustering. Hierarchical clustering helps for ease access to data collection and forwarding the same to the base station. The proposed Distributed Self-organizing Load Balancing Clustering Algorithm (DSLBCA) for WSNs designed considering the parameters of neighbor distance, residual energy, and node density.  The validity of the DSLBCA has been shown by comparing the network lifetime and energy dissipation with Low Energy Adaptive Clustering Hierarchy (LEACH), and Hybrid Energy Efficient Distributed Clustering (HEED). The proposed algorithm shows improved result in enhancing the life time of the network in both stationary and mobile environment

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    A Multi-Hop 6LoWPAN Wireless Sensor Network for Waste Management Optimization

    Get PDF
    In the first part of this Thesis several Wireless Sensor Network technologies, including the ones based on the IEEE 802.15.4 Protocol Standard like ZigBee, 6LoWPAN and Ultra Wide Band, as well as other technologies based on other protocol standards like Z-Wave, Bluetooth and Dash7, are analyzed with respect to relevance and suitability with the Waste Management Outsmart European FP7 Project. A particular attention is given to the parameters which characterize a Large Scale WSN for Smart Cities, due to the amount of sensors involved and to the practical application requested by the project. Secondly, a prototype of sensor network is proposed: an Operative System named Contiki is chosen for its portability on different hardware platforms, its Open Source license, for the use of the 6LoW-PAN protocol and for the implementation of the new RPL routing protocol. The Operative System is described in detail, with a special focus on the uIPv6 TCP/IP stack and RPL implementation. With regard to this innovative routing proto col designed specifically for Low Power Lossy Networks, chapter 4 describes in detail how the network topology is organized as a Directed Acyclic Graph, what is an RPL Instance and how downward and upward routes are constructed and maintained. With the use of several AVR Atmel modules mounting the Contiki OS a real WSN is created and, with an Ultrasonic Sensor, the filling level of a waste basket prototype is periodically detected and transmitted through a multi-hop wireless network to a sink nodeope

    RPL-Based Routing Protocols in IoT Applications: A Review

    Get PDF
    In the last few years, the Internet of Things (IoT) has proved to be an interesting and promising paradigm that aims to contribute to countless applications by connecting more physical 'things' to the Internet. Although it emerged as a major enabler for many next-generation applications, it also introduced new challenges to already saturated networks. The IoT is already coming to life especially in healthcare and smart environment applications adding a large number of low-powered sensors and actuators to improve lifestyle and introduce new services to the community. The Internet Engineering Task Force (IETF) developed RPL as the routing protocol for low-power and lossy networks (LLNs) and standardized it in RFC6550 in 2012. RPL quickly gained interest, and many research papers were introduced to evaluate and improve its performance in different applications. In this paper, we present a discussion of the main aspects of RPL and the advantages and disadvantages of using it in different IoT applications. We also review the available research related to RPL in a systematic manner based on the enhancement area and the service type. In addition to that, we compare related RPL-based protocols in terms of energy efficiency, reliability, flexibility, robustness, and security. Finally, we present our conclusions and discuss the possible future directions of RPL and its applicability in the Internet of the future

    JTIT

    Get PDF
    kwartalni

    Data Routing for Mobile Internet of Things Applications

    Get PDF
    The Internet of things (IoT) represents a new era of networking, it envisions the Internet of the future where objects or “Things” are seamlessly connected to the Internet providing various services to the community. Countless applications can benefit from these new services and some of them have already come to life especially in healthcare and smart environments. The full realization of the IoT can only be achieved by having relevant standards that enable the integration of these new services with the Internet. The IEEE 802.15.4, 6LoWPAN and IPv6 standards define the framework for wireless sensor networks (WSN) to run using limited resources but still connect to the Internet and use IP addresses. The Internet engineering task force (IETF) developed a routing protocol for low-power and lossy networks (LLN) to provide bidirectional connectivity throughout the network, this routing protocol for LLNs (RPL) was standardized in RFC6550 in 2012 making it the standard routing protocol for IoT. With all the bright features and new services that come with the futuristic IoT applications, new challenges present themselves calling for the need to address them and provide efficient approaches to manage them. One of the most crucial challenges that faces data routing is the presence of mobile nodes, it affects energy consumption, end-to-end delay, throughput, latency and packet delivery ratio (PDR). This thesis addresses mobility issues from the data routing point of view, and presents a number of enhancements to the existing protocols in both mesh-under and route-over routing approaches, along with an introduction to relevant standards and protocols, and a literature review of the state of the art in research. A dynamic cluster head election protocol (DCHEP) is proposed to improve network availability and energy efficiency for mobile WSNs under the beacon-enabled IEEE 802.15.4 standard. The proposed protocol is developed and simulated using CASTALIA/OMNET++ with a realistic radio model and node behaviour. DCHEP improves the network availability and lifetime and maintains cluster hierarchy in a proactive manner even in a mobile WSN where all the nodes including cluster heads (CHs) are mobile, this is done by dynamically switching CHs allowing nodes to act as multiple backup cluster heads (BCHs) with different priorities based on their residual energy and connectivity to other clusters. DCHEP is a flexible and scalable solution targeted for dense WSNs with random mobility. The proposed protocol achieves an average of 33% and 26% improvement to the availability and energy efficiency respectively compared with the original standard. Moving to network routing, an investigation of the use of RPL in dynamic networks is presented to provide an enhanced RPL for different applications with dynamic mobility and diverse network requirements. This implementation of RPL is designed with a new dynamic objective-function (D-OF) to improve the PDR, end-to-end delay and energy consumption while maintaining low packet overhead and loop-avoidance. A controlled reverse-trickle timer is proposed based on received signal strength identification (RSSI) readings to maintain high responsiveness with minimum overhead, and consult the objective function when a movement or inconsistency is detected to help nodes make an informed decision. Simulations are done using Cooja with different mobility scenarios for healthcare and animal tracking applications considering multi-hop routing. The results show that the proposed dynamic RPL (D-RPL) adapts to different mobility scenarios and has a higher PDR, slightly lower end-to-end delay and reasonable energy consumption compared to related existing protocols. Many recent applications require the support of mobility and an optimised approach to efficiently handle mobile nodes is essential. A game scenario is formulated where nodes compete for network resources in a selfish manner, to send their data packets to the sink node. Each node counts as a player in the noncooperative game. The optimal solution for the game is found using the unique Nash equilibrium (NE) where a node cannot improve its pay-off function while other players use their current strategy. The proposed solution aims to present a strategy to control different parameters of mobile nodes (or static nodes in a mobile environment) including transmission rate, timers and operation mode in order to optimize the performance of RPL under mobility in terms of PDR, throughput, energy consumption and end-to-end-delay. The proposed solution monitors the mobility of nodes based on RSSI readings, it also takes into account the priorities of different nodes and the current level of noise in order to select the preferred transmission rate. An optimised protocol called game-theory based mobile RPL (GTM-RPL) is implemented and tested in multiple scenarios with different network requirements for Internet of Things applications. Simulation results show that in the presence of mobility, GTM-RPL provides a flexible and adaptable solution that improves throughput whilst maintaining lower energy consumption showing more than 10% improvement compared to related work. For applications with high throughput requirements, GTM-RPL shows a significant advantage with more than 16% improvement in throughput and 20% improvement in energy consumption. Since the standardization of RPL, the volume of RPL-related research has increased exponentially and many enhancements and studies were introduced to evaluate and improve this protocol. However, most of these studies focus on simulation and have little interest in practical evaluation. Currently, six years after the standardization of RPL, it is time to put it to a practical test in real IoT applications and evaluate the feasibility of deploying and using RPL at its current state. A hands-on practical testing of RPL in different scenarios and under different conditions is presented to evaluate its efficiency in terms of packet delivery ratio (PDR), throughput, latency and energy consumption. In order to look at the current-state of routing in IoT applications, a discussion of the main aspects of RPL and the advantages and disadvantages of using it in different IoT applications is presented. In addition to that, a review of the available research related to RPL is conducted in a systematic manner, based on the enhancement area and the service type. Finally, a comparison of related RPL-based protocols in terms of energy efficiency, reliability, flexibility, robustness and security is presented along with conclusions and a discussion of the possible future directions of RPL and its applicability in the Internet of the future

    Sensing and Signal Processing in Smart Healthcare

    Get PDF
    In the last decade, we have witnessed the rapid development of electronic technologies that are transforming our daily lives. Such technologies are often integrated with various sensors that facilitate the collection of human motion and physiological data and are equipped with wireless communication modules such as Bluetooth, radio frequency identification, and near-field communication. In smart healthcare applications, designing ergonomic and intuitive human–computer interfaces is crucial because a system that is not easy to use will create a huge obstacle to adoption and may significantly reduce the efficacy of the solution. Signal and data processing is another important consideration in smart healthcare applications because it must ensure high accuracy with a high level of confidence in order for the applications to be useful for clinicians in making diagnosis and treatment decisions. This Special Issue is a collection of 10 articles selected from a total of 26 contributions. These contributions span the areas of signal processing and smart healthcare systems mostly contributed by authors from Europe, including Italy, Spain, France, Portugal, Romania, Sweden, and Netherlands. Authors from China, Korea, Taiwan, Indonesia, and Ecuador are also included

    Adaptive Energy Saving and Mobility Support IPv6 Routing Protocol in Low-Power and Lossy Networks for Internet of Things and Wireless Sensor Networks

    Get PDF
    Internet of Things (IoT) is an interconnection of physical objects that can be controlled, monitored and exchange information from remote locations over the internet while been connected to an Application Programme Interface (API) and sensors. It utilizes low-powered digital radios for communication enabling millions and billions of Low-power and Lossy Network (LLN) devices to communicate efficiently via a predetermined routing protocol. Several research gaps have identified the constraints of standardised versions of IPv6 Routing Protocol for Low Power and Lossy Networks evidently showing its lack of ability to handle the growing application needs and challenges. This research aims to handle routing from a different perspective extending from energy efficiency, to mobility aware and energy scavenging nodes thereby presenting numerous improvements that can suit various network topologies and application needs. Envisioning all the prospects and innovative services associated with the futuristic ubiquitous communication of IoT applications, we propose an adaptive Objective Function for RPL protocol known as Optimum Reliable Objective Function (OR-OF) having a fuzzy combination of five routing metrics which are chosen based on system and application requirements. It is an approach which combines the three proposed implemented Objective Functions within this thesis to enable the OR-OF adapt to different routing requirements for different IoT applications. The three proposed OFs are Energy saving Routing OF, Enhanced Mobility Support Routing OF and Optimized OF for Energy Scavenging nodes. All proposed OFs were designed, implemented, and simulated in COOJA simulator of ContikiOS, and mathematical models were developed to validate simulated results. Performance Evaluation indicated an overall improvement as compared with the standardised versions of RPL protocols and other related research works in terms of network lifetime with an average of 40%, packet delivery ratio of 21%, energy consumption of 82% and End-to-End Delay of 92%
    corecore