3,073 research outputs found

    SSthreshless Start: A Sender-Side TCP Intelligence for Long Fat Network

    Full text link
    Measurement shows that 85% of TCP flows in the internet are short-lived flows that stay most of their operation in the TCP startup phase. However, many previous studies indicate that the traditional TCP Slow Start algorithm does not perform well, especially in long fat networks. Two obvious problems are known to impact the Slow Start performance, which are the blind initial setting of the Slow Start threshold and the aggressive increase of the probing rate during the startup phase regardless of the buffer sizes along the path. Current efforts focusing on tuning the Slow Start threshold and/or probing rate during the startup phase have not been considered very effective, which has prompted an investigation with a different approach. In this paper, we present a novel TCP startup method, called threshold-less slow start or SSthreshless Start, which does not need the Slow Start threshold to operate. Instead, SSthreshless Start uses the backlog status at bottleneck buffer to adaptively adjust probing rate which allows better seizing of the available bandwidth. Comparing to the traditional and other major modified startup methods, our simulation results show that SSthreshless Start achieves significant performance improvement during the startup phase. Moreover, SSthreshless Start scales well with a wide range of buffer size, propagation delay and network bandwidth. Besides, it shows excellent friendliness when operating simultaneously with the currently popular TCP NewReno connections.Comment: 25 pages, 10 figures, 7 table

    Implementation of Provably Stable MaxNet

    Get PDF
    MaxNet TCP is a congestion control protocol that uses explicit multi-bit signalling from routers to achieve desirable properties such as high throughput and low latency. In this paper we present an implementation of an extended version of MaxNet. Our contributions are threefold. First, we extend the original algorithm to give both provable stability and rate fairness. Second, we introduce the MaxStart algorithm which allows new MaxNet connections to reach their fair rates quickly. Third, we provide a Linux kernel implementation of the protocol. With no overhead but 24-bit price signals, our implementation scales from 32 bit/s to 1 peta-bit/s with a 0.001% rate accuracy. We confirm the theoretically predicted properties by performing a range of experiments at speeds up to 1 Gbit/sec and delays up to 180 ms on the WAN-in-Lab facility

    Reducing Transport Latency for Short Flows with Multipath TCP

    Get PDF
    Multipath TCP (MPTCP) has been an emerging transport protocol that provides network resilience to failures and improves throughput by splitting a data stream into multiple subflows across all the available multiple paths. While MPTCP is generally beneficial for throughput-sensitive large flows with large number of subflows, it may be harmful for latency-sensitive small flows. MPTCP assigns each subflow a congestion window, making short flows susceptible to timeout when a flow only contains a few packets. This condition becomes even worse when the paths have heterogeneous characteristics as packet reordering occurs and the slow paths can be used with MPTCP, causing the increased end-to-end delay and the lower application Goodput. Thus, it is important to choose the appropriate subflows for each MPTCP connection to achieve the good performance. However, the subflows in MPTCP are determined before a connection is established, and they usually remain unchanged during the lifetime of that connection. To address this issue, we propose DMPTCP, which dynamically adjusts the subflows according to application workloads. Specifically, DMPTCP first utilizes the idea of TCP modeling to estimate the latency on the path under scheduling and the data amount sent on the other paths simultaneously, and then decides the set of subflows to be used for certain application periodically with the goal of reducing completion time for short flows and achieving a higher throughput for long flows. We implement DMPTCP in a Linux server and conduct extensive experiments both in NS3 and in Linux testbed to validate its effectiveness. Our evaluation shows that DMPTCP decreases the completion time by over 46.55% compared to conventional MPTCP for short flows while increases the Goodput up to 21.3% for long-lived flows

    Reducing Transport Latency for Short Flows with Multipath TCP

    Get PDF
    Multipath TCP (MPTCP) has been an emerging transport protocol that provides network resilience to failures and improves throughput by splitting a data stream into multiple subflows across all the available multiple paths. While MPTCP is generally beneficial for throughput-sensitive large flows with large number of subflows, it may be harmful for latency-sensitive small flows. MPTCP assigns each subflow a congestion window, making short flows susceptible to timeout when a flow only contains a few packets. This condition becomes even worse when the paths have heterogeneous characteristics as packet reordering occurs and the slow paths can be used with MPTCP, causing the increased end-to-end delay and the lower application Goodput. Thus, it is important to choose the appropriate subflows for each MPTCP connection to achieve the good performance. However, the subflows in MPTCP are determined before a connection is established, and they usually remain unchanged during the lifetime of that connection. To address this issue, we propose DMPTCP, which dynamically adjusts the subflows according to application workloads. Specifically, DMPTCP first utilizes the idea of TCP modeling to estimate the latency on the path under scheduling and the data amount sent on the other paths simultaneously, and then decides the set of subflows to be used for certain application periodically with the goal of reducing completion time for short flows and achieving a higher throughput for long flows. We implement DMPTCP in a Linux server and conduct extensive experiments both in NS3 and in Linux testbed to validate its effectiveness. Our evaluation shows that DMPTCP decreases the completion time by over 46.55% compared to conventional MPTCP for short flows while increases the Goodput up to 21.3% for long-lived flows

    Design and analysis for TCP-friendly window-based congestion control

    Get PDF
    The current congestion control mechanisms for the Internet date back to the early 1980’s and were primarily designed to stop congestion collapse with the typical traffic of that era. In recent years the amount of traffic generated by real-time multimedia applications has substantially increased, and the existing congestion control often does not opt to those types of applications. By this reason, the Internet can be fall into a uncontrolled system such that the overall throughput oscillates too much by a single flow which in turn can lead a poor application performance. Apart from the network level concerns, those types of applications greatly care of end-to-end delay and smoother throughput in which the conventional congestion control schemes do not suit. In this research, we will investigate improving the state of congestion control for real-time and interactive multimedia applications. The focus of this work is to provide fairness among applications using different types of congestion control mechanisms to get a better link utilization, and to achieve smoother and predictable throughput with suitable end-to-end packet delay
    • …
    corecore