2 research outputs found

    AsymDPOP: Complete Inference for Asymmetric Distributed Constraint Optimization Problems

    Full text link
    Asymmetric distributed constraint optimization problems (ADCOPs) are an emerging model for coordinating agents with personal preferences. However, the existing inference-based complete algorithms which use local eliminations cannot be applied to ADCOPs, as the parent agents are required to transfer their private functions to their children. Rather than disclosing private functions explicitly to facilitate local eliminations, we solve the problem by enforcing delayed eliminations and propose AsymDPOP, the first inference-based complete algorithm for ADCOPs. To solve the severe scalability problems incurred by delayed eliminations, we propose to reduce the memory consumption by propagating a set of smaller utility tables instead of a joint utility table, and to reduce the computation efforts by sequential optimizations instead of joint optimizations. The empirical evaluation indicates that AsymDPOP significantly outperforms the state-of-the-arts, as well as the vanilla DPOP with PEAV formulation

    Distributed Constraint Optimization Problems and Applications: A Survey

    Full text link
    The field of Multi-Agent System (MAS) is an active area of research within Artificial Intelligence, with an increasingly important impact in industrial and other real-world applications. Within a MAS, autonomous agents interact to pursue personal interests and/or to achieve common objectives. Distributed Constraint Optimization Problems (DCOPs) have emerged as one of the prominent agent architectures to govern the agents' autonomous behavior, where both algorithms and communication models are driven by the structure of the specific problem. During the last decade, several extensions to the DCOP model have enabled them to support MAS in complex, real-time, and uncertain environments. This survey aims at providing an overview of the DCOP model, giving a classification of its multiple extensions and addressing both resolution methods and applications that find a natural mapping within each class of DCOPs. The proposed classification suggests several future perspectives for DCOP extensions, and identifies challenges in the design of efficient resolution algorithms, possibly through the adaptation of strategies from different areas
    corecore