80 research outputs found

    Deep Reinforcement Learning Powered IRS-Assisted Downlink NOMA

    Get PDF
    In this work, we examine an intelligent reflecting surface (IRS) assisted downlink non-orthogonal multiple access (NOMA) scenario intending to maximize the sum-rate of users. The optimization problem at the IRS is quite complicated, and non-convex since it requires the tuning of the phase shift reflection matrix. Driven by the rising deployment of deep reinforcement learning (DRL) techniques that are capable of coping with solving non-convex optimization problems, we employ DRL to predict and optimally tune the IRS phase shift matrices. Simulation results reveal that the IRS-assisted NOMA system based on our utilized DRL scheme achieves a high sum-rate compared to OMA-based one, and as the transmit power increases, the capability of serving more users increases. Furthermore, results show that imperfect successive interference cancellation (SIC) has a deleterious impact on the data rate of users performing SIC. As the imperfection increases by ten times, the rate decreases by more than 10%

    Dynamic Resource Management in Integrated NOMA Terrestrial-Satellite Networks using Multi-Agent Reinforcement Learning

    Full text link
    This study introduces a resource allocation framework for integrated satellite-terrestrial networks to address these challenges. The framework leverages local cache pool deployments and non-orthogonal multiple access (NOMA) to reduce time delays and improve energy efficiency. Our proposed approach utilizes a multi-agent enabled deep deterministic policy gradient algorithm (MADDPG) to optimize user association, cache design, and transmission power control, resulting in enhanced energy efficiency. The approach comprises two phases: User Association and Power Control, where users are treated as agents, and Cache Optimization, where the satellite (Bs) is considered the agent. Through extensive simulations, we demonstrate that our approach surpasses conventional single-agent deep reinforcement learning algorithms in addressing cache design and resource allocation challenges in integrated terrestrial-satellite networks. Specifically, our proposed approach achieves significantly higher energy efficiency and reduced time delays compared to existing methods.Comment: 16, 1

    Machine Learning Empowered Resource Allocation for NOMA Enabled IoT Networks

    Get PDF
    The Internet of things (IoT) is one of the main use cases of ultra massive machine type communications (umMTC), which aims to connect large-scale short packet sensors or devices in sixth-generation (6G) systems. This rapid increase in connected devices requires efficient utilization of limited spectrum resources. To this end, non-orthogonal multiple access (NOMA) is considered a promising solution due to its potential for massive connectivity over the same time/frequency resource block (RB). The IoT users’ have the characteristics of different features such as sporadic transmission, high battery life cycle, minimum data rate requirements, and different QoS requirements. Therefore, keeping in view these characteristics, it is necessary for IoT networks with NOMA to allocate resources more appropriately and efficiently. Moreover, due to the absence of 1) learning capabilities, 2) scalability, 3) low complexity, and 4) long-term resource optimization, conventional optimization approaches are not suitable for IoT networks with time-varying communication channels and dynamic network access. This thesis provides machine learning (ML) based resource allocation methods to optimize the long-term resources for IoT users according to their characteristics and dynamic environment. First, we design a tractable framework based on model-free reinforcement learning (RL) for downlink NOMA IoT networks to allocate resources dynamically. More specifically, we use actor critic deep reinforcement learning (ACDRL) to improve the sum rate of IoT users. This model can optimize the resource allocation for different users in a dynamic and multi-cell scenario. The state space in the proposed framework is based on the three-dimensional association among multiple IoT users, multiple base stations (BSs), and multiple sub-channels. In order to find the optimal resources solution for the maximization of sum rate problem in network and explore the dynamic environment better, this work utilizes the instantaneous data rate as a reward. The proposed ACDRL algorithm is scalable and handles different network loads. The proposed ACDRL-D and ACDRL-C algorithms outperform DRL and RL in terms of convergence speed and data rate by 23.5\% and 30.3\%, respectively. Additionally, the proposed scheme provides better sum rate as compare to orthogonal multiple access (OMA). Second, similar to sum rate maximization problem, energy efficiency (EE) is a key problem, especially for applications where battery replacement is costly or difficult to replace. For example, the sensors with different QoS requirements are deployed in radioactive areas, hidden in walls, and in pressurized pipes. Therefore, for such scenarios, energy cooperation schemes are required. To maximize the EE of different IoT users, i.e., grant-free (GF) and grant-based (GB) in the network with uplink NOMA, we propose an RL based semi-centralized optimization framework. In particular, this work applied proximal policy optimization (PPO) algorithm for GB users and to optimize the EE for GF users, a multi-agent deep Q-network where used with the aid of a relay node. Numerical results demonstrate that the suggested algorithm increases the EE of GB users compared to random and fixed power allocations methods. Moreover, results shows superiority in the EE of GF users over the benchmark scheme (convex optimization). Furthermore, we show that the increase in the number of GB users has a strong correlation with the EE of both types of users. Third, we develop an efficient model-free backscatter communication (BAC) approach with simultaneously downlink and uplink NOMA system to jointly optimize the transmit power of downlink IoT users and the reflection coefficient of uplink backscatter devices using a reinforcement learning algorithm, namely, soft actor critic (SAC). With the advantage of entropy regularization, the SAC agent learns to explore and exploit the dynamic BAC-NOMA network efficiently. Numerical results unveil the superiority of the proposed algorithm over the conventional optimization approach in terms of the average sum rate of uplink backscatter devices. We show that the network with multiple downlink users obtained a higher reward for a large number of iterations. Moreover, the proposed algorithm outperforms the benchmark scheme and BAC with OMA in terms of sum rate, self-interference coefficients, noise levels, QoS requirements, and cell radii

    Deep Reinforcement Learning Powered IRS-Assisted Downlink NOMA

    Full text link
    In this work, we examine an intelligent reflecting surface (IRS) assisted downlink non-orthogonal multiple access (NOMA) scenario with the aim of maximizing the sum rate of users. The optimization problem at the IRS is quite complicated, and non-convex, since it requires the tuning of the phase shift reflection matrix. Driven by the rising deployment of deep reinforcement learning (DRL) techniques that are capable of coping with solving non-convex optimization problems, we employ DRL to predict and optimally tune the IRS phase shift matrices. Simulation results reveal that IRS assisted NOMA based on our utilized DRL scheme achieves high sum rate compared to OMA based one, and as the transmit power increases, the capability of serving more users increases. Furthermore, results show that imperfect successive interference cancellation (SIC) has a deleterious impact on the data rate of users performing SIC. As the imperfection increases by ten times, the rate decreases by more than 10%

    Intelligent and Efficient Ultra-Dense Heterogeneous Networks for 5G and Beyond

    Get PDF
    Ultra-dense heterogeneous network (HetNet), in which densified small cells overlaying the conventional macro-cells, is a promising technique for the fifth-generation (5G) mobile network. The dense and multi-tier network architecture is able to support the extensive data traffic and diverse quality of service (QoS) but meanwhile arises several challenges especially on the interference coordination and resource management. In this thesis, three novel network schemes are proposed to achieve intelligent and efficient operation based on the deep learning-enabled network awareness. Both optimization and deep learning methods are developed to achieve intelligent and efficient resource allocation in these proposed network schemes. To improve the cost and energy efficiency of ultra-dense HetNets, a hotspot prediction based virtual small cell (VSC) network is proposed. A VSC is formed only when the traffic volume and user density are extremely high. We leverage the feature extraction capabilities of deep learning techniques and exploit a long-short term memory (LSTM) neural network to predict potential hotspots and form VSC. Large-scale antenna array enabled hybrid beamforming is also adaptively adjusted for highly directional transmission to cover these VSCs. Within each VSC, one user equipment (UE) is selected as a cell head (CH), which collects the intra-cell traffic using the unlicensed band and relays the aggregated traffic to the macro-cell base station (MBS) in the licensed band. The inter-cell interference can thus be reduced, and the spectrum efficiency can be improved. Numerical results show that proposed VSCs can reduce 55%55\% power consumption in comparison with traditional small cells. In addition to the smart VSCs deployment, a novel multi-dimensional intelligent multiple access (MD-IMA) scheme is also proposed to achieve stringent and diverse QoS of emerging 5G applications with disparate resource constraints. Multiple access (MA) schemes in multi-dimensional resources are adaptively scheduled to accommodate dynamic QoS requirements and network states. The MD-IMA learns the integrated-quality-of-system-experience (I-QoSE) by monitoring and predicting QoS through the LSTM neural network. The resource allocation in the MD-IMA scheme is formulated as an optimization problem to maximize the I-QoSE as well as minimize the non-orthogonality (NO) in view of implementation constraints. In order to solve this problem, both model-based optimization algorithms and model-free deep reinforcement learning (DRL) approaches are utilized. Simulation results demonstrate that the achievable I-QoSE gain of MD-IMA over traditional MA is 15%15\% - 18%18\%. In the final part of the thesis, a Software-Defined Networking (SDN) enabled 5G-vehicle ad hoc networks (VANET) is designed to support the growing vehicle-generated data traffic. In this integrated architecture, to reduce the signaling overhead, vehicles are clustered under the coordination of SDN and one vehicle in each cluster is selected as a gateway to aggregate intra-cluster traffic. To ensure the capacity of the trunk-link between the gateway and macro base station, a Non-orthogonal Multiplexed Modulation (NOMM) scheme is proposed to split aggregated data stream into multi-layers and use sparse spreading code to partially superpose the modulated symbols on several resource blocks. The simulation results show that the energy efficiency performance of proposed NOMM is around 1.5-2 times than that of the typical orthogonal transmission scheme
    • …
    corecore