30 research outputs found

    A SURVEY ON TOPOLOGY-BASED MESSAGE BROADCAST SCHEMES IN VEHICULAR NETWORKS

    Get PDF
    Vehicular ad-hoc networks (VANETs) are subclass of mobile ad-hoc networks (MANETs). They have been the most promising research field and development for the last few years. VANETs use vehicles as mobile nodes to provide communication among nearby vehicles and between vehicles and nearby roadside equipment. VANETs come with several challenging characteristics, such as dynamic and potentially large scale network topology, high mobility and intermittent connectivity of vehicular nodes, and broadcasting as the predominant communication to disseminate the safety messages. When a traffic accident happens, the safety message should be broadcasted to all vehicles in the area exposed to potential hazard. Recently, there have been a significant number of broadcasting protocols for VANETs reported in the literature. In this survey paper we provide an overview of topology-based broadcasting protocols and associated requirements, along with challenges and their proposed current and past major solutions. In addition, classification and comparison of topology-based broadcasting protocols are described from their pros and cons. Featured solutions in this domain are categorized and discussed

    A Recent Connected Vehicle - IoT Automotive Application Based on Communication Technology

    Get PDF
    Realizing the full potential of vehicle communications depends in large part on the infrastructure of vehicular networks. As more cars are connected to the Internet and one another, new technological advancements are being driven by a multidisciplinary approach. As transportation networks become more complicated, academic, and automotive researchers collaborate to offer their thoughts and answers. They also imagine various applications to enhance mobility and the driving experience. Due to the requirement for low latency, faster throughput, and increased reliability, wireless access technologies and an appropriate (potentially dedicated) infrastructure present substantial hurdles to communication systems. This article provides a comprehensive overview of the wireless access technologies, deployment, and connected car infrastructures that enable vehicular connectivity. The challenges, issues, services, and maintenance of connected vehicles that rely on infrastructure-based vehicular communications are also identified in this paper

    Communications in Vehicular Ad Hoc Networks

    Get PDF

    The dynamic counter-based broadcast for mobile ad hoc networks

    Get PDF
    Broadcasting is a fundamental operation in mobile ad hoc networks (MANETs) crucial to the successful deployment of MANETs in practice. Simple flooding is the most basic broadcasting technique where each node rebroadcasts any received packet exactly once. Although flooding is ideal for its simplicity and high reachability it has a critical disadvantage in that it tends to generate excessive collision and consumes the medium by unneeded and redundant packets. A number of broadcasting schemes have been proposed in MANETs to alleviate the drawbacks of flooding while maintaining a reasonable level of reachability. These schemes mainly fall into two categories: stochastic and deterministic. While the former employs a simple yet effective probabilistic principle to reduce redundant rebroadcasts the latter typically requires sophisticated control mechanisms to reduce excessive broadcast. The key danger with schemes that aim to reduce redundant broadcasts retransmissions is that they often do so at the expense of a reachability threshold which can be required in many applications. Among the proposed stochastic schemes, is counter-based broadcasting. In this scheme redundant broadcasts are inhibited by criteria related to the number of duplicate packets received. For this scheme to achieve optimal reachability, it requires fairly stable and known nodal distributions. However, in general, a MANETs‟ topology changes continuously and unpredictably over time. Though the counter-based scheme was among the earliest suggestions to reduce the problems associated with broadcasting, there have been few attempts to analyse in depth the performance of such an approach in MANETs. Accordingly, the first part of this research, Chapter 3, sets a baseline study of the counter-based scheme analysing it under various network operating conditions. The second part, Chapter 4, attempts to establish the claim that alleviating existing stochastic counter-based scheme by dynamically setting threshold values according to local neighbourhood density improves overall network efficiency. This is done through the implementation and analysis of the Dynamic Counter-Based (DCB) scheme, developed as part of this work. The study shows a clear benefit of the proposed scheme in terms of average collision rate, saved rebroadcasts and end-to-end delay, while maintaining reachability. The third part of this research, Chapter 5, evaluates dynamic counting and tests its performance in some approximately realistic scenarios. The examples chosen are from the rapidly developing field of Vehicular Ad hoc Networks (VANETs). The schemes are studied under metropolitan settings, involving nodes moving in streets and lanes with speed and direction constraints. Two models are considered and implemented: the first assuming an unobstructed open terrain; the other taking account of buildings and obstacles. While broadcasting is a vital operation in most MANET routing protocols, investigation of stochastic broadcast schemes for MANETs has tended to focus on the broadcast schemes, with little examination on the impact of those schemes in specific applications, such as route discovery in routing protocols. The fourth part of this research, Chapter 6, evaluates the performance of the Ad hoc On-demand Distance Vector (AODV) routing protocol with a route discovery mechanism based on dynamic-counting. AODV was chosen as it is widely accepted by the research community and is standardised by the MANET IETF working group. That said, other routing protocols would be expected to interact in a similar manner. The performance of the AODV routing protocol is analysed under three broadcasting mechanisms, notably AODV with flooding, AODV with counting and AODV with dynamic counting. Results establish that a noticeable advantage, in most considered metrics can be achieved using dynamic counting with AODV compared to simple counting or traditional flooding. In summary, this research analysis the Dynamic Counter-Based scheme under a range of network operating conditions and applications; and demonstrates a clear benefit of the scheme when compared to its predecessors under a wide range of considered conditions

    Reliable Message Dissemination in Mobile Vehicular Networks

    Full text link
    Les réseaux véhiculaires accueillent une multitude d’applications d’info-divertissement et de sécurité. Les applications de sécurité visent à améliorer la sécurité sur les routes (éviter les accidents), tandis que les applications d’info-divertissement visent à améliorer l'expérience des passagers. Les applications de sécurité ont des exigences rigides en termes de délais et de fiabilité ; en effet, la diffusion des messages d’urgence (envoyés par un véhicule/émetteur) devrait être fiable et rapide. Notons que, pour diffuser des informations sur une zone de taille plus grande que celle couverte par la portée de transmission d’un émetteur, il est nécessaire d’utiliser un mécanisme de transmission multi-sauts. De nombreuses approches ont été proposées pour assurer la fiabilité et le délai des dites applications. Toutefois, ces méthodes présentent plusieurs lacunes. Cette thèse, nous proposons trois contributions. La première contribution aborde la question de la diffusion fiable des messages d’urgence. A cet égard, un nouveau schéma, appelé REMD, a été proposé. Ce schéma utilise la répétition de message pour offrir une fiabilité garantie, à chaque saut, tout en assurant un court délai. REMD calcule un nombre optimal de répétitions en se basant sur l’estimation de la qualité de réception de lien dans plusieurs locations (appelées cellules) à l’intérieur de la zone couverte par la portée de transmission de l’émetteur. REMD suppose que les qualités de réception de lien des cellules adjacentes sont indépendantes. Il sélectionne, également, un nombre de véhicules, appelés relais, qui coopèrent dans le contexte de la répétition du message d’urgence pour assurer la fiabilité en multi-sauts. La deuxième contribution, appelée BCRB, vise à améliorer REMD ; elle suppose que les qualités de réception de lien des cellules adjacentes sont dépendantes ce qui est, généralement, plus réaliste. BCRB utilise les réseaux Bayésiens pour modéliser les dépendances en vue d’estimer la qualité du lien de réception avec une meilleure précision. La troisième contribution, appelée RICS, offre un accès fiable à Internet. RICS propose un modèle d’optimisation, avec une résolution exacte optimale à l'aide d’une technique de réduction de la dimension spatiale, pour le déploiement des passerelles. Chaque passerelle utilise BCRB pour établir une communication fiable avec les véhicules.Vehicular networks aim to enable a plethora of safety and infotainment applications. Safety applications aim to preserve people's lives (e.g., by helping in avoiding crashes) while infotainment applications focus on enhancing the passengers’ experience. These applications, especially safety applications, have stringent requirements in terms of reliability and delay; indeed, dissemination of an emergency message (e.g., by a vehicle/sender involved in a crash) should be reliable while satisfying short delay requirements. Note, that multi-hop dissemination is needed to reach all vehicles, in the target area, that may be outside the transmission range of the sender. Several schemes have been proposed to provide reliability and short delay for vehicular applications. However, these schemes have several limitations. Thus, the design of new solutions, to meet the requirement of vehicular applications in terms of reliability while keeping low end-to-end delay, is required. In this thesis, we propose three schemes. The first scheme is a multi-hop reliable emergency message dissemination scheme, called REMD, which guarantees a predefined reliability , using message repetitions/retransmissions, while satisfying short delay requirements. It computes an optimal number of repetitions based on the estimation of link reception quality at different locations (called cells) in the transmission range of the sender; REMD assumes that link reception qualities of adjacent cells are independent. It also adequately selects a number of vehicles, called forwarders, that cooperate in repeating the emergency message with the objective to satisfy multi-hop reliability requirements. The second scheme, called BCRB, overcomes the shortcoming of REMD by assuming that link reception qualities of adjacent cells are dependent which is more realistic in real-life scenarios. BCRB makes use of Bayesian networks to model these dependencies; this allows for more accurate estimation of link reception qualities leading to better performance of BCRB. The third scheme, called RICS, provides internet access to vehicles by establishing multi-hop reliable paths to gateways. In RICS, the gateway placement is modeled as a k-center optimisation problem. A space dimension reduction technique is used to solve the problem in exact time. Each gateway makes use of BCRB to establish reliable communication paths to vehicles

    Routing protocol for V2X communications for Urban VANETs

    Get PDF
    Intelligent Transportation Systems (ITSs) have been attracting tremendous attention in both academia and industry due to emerging applications that pave the way towards safer enjoyable journeys and inclusive digital partnerships. Undoubtedly, these ITS applications will demand robust routing protocols that not only focus on Inter-Vehicle Communications but also on providing fast, reliable, and secure access to the infrastructure. This thesis aims mainly to introduce the challenges of data packets routing through urban environment using the help of infrastructure. Broadcasting transmission is an essential operational technique that serves a broad range of applications which demand different restrictive QoS provisioning levels. Although broadcast communication has been investigated widely in highway vehicular networks, it is undoubtedly still a challenge in the urban environment due to the obstacles, such as high buildings. In this thesis, the Road-Topology based Broadcast Protocol (RTBP) is proposed, a distance and contention-based forwarding scheme suitable for both urban and highway vehicular environments. RTBP aims at assigning the highest forwarding priority to a vehicle, called a mobile repeater, having the greatest capability to send the packet in multiple directions. In this way, RTBP effectively reduces the number of competing vehicles and minimises the number of hops required to retransmit the broadcast packets around the intersections to cover the targeted area. By investigating the RTBP under realistic urban scenarios against well-known broadcast protocols, eMDR and TAF, that are dedicated to retransmitting the packets around intersections, the results showed the superiority of the RTBP in delivering the most critical warning information for 90% of vehicles with significantly lower delay of 58% and 70% compared to eMDR and TAF. The validation of this performance was clear when the increase in the number of vehicles. Secondly, a Fast and Reliable Hybrid routing (FRHR) protocol is introduced for efficient infrastructure access which is capable of handling efficient vehicle to vehicle communications. Interface to infrastructure is provided by carefully placed RoadSide Units (RSUs) which broadcast beacons in a multi-hop fashion in constrained areas. This enables vehicles proactively to maintain fresh minimum-delay routes to other RSUs while reactively discovering routes to nearby vehicles. The proposed protocol utilizes RSUs connected to the wired backbone network to relay packets toward remote vehicles. A vehicle selects an RSU to register with according to the expected mean delay instead of the device’s remoteness. The FRHR performance is evaluated against established infrastructure routing protocols, Trafroute, IGSR and RBVT-R that are dedicated to for urban environment, the results showed an improvement of 20% to 33% in terms of packet delivery ratio and lower latency particularly in sparse networks due to its rapid response to changes in network connectivity. Thirdly, focusing on increasing FRHR’s capability to provide more stable and durable routes to support the QoS requirements of expected wide-range ITS applications on the urban environment, a new route selection mechanism is introduced, aiming at selecting highly connected crossroads. The new protocol is called, Stable Infrastructure Routing Protocol (SIRP). Intensive simulation results showed that SIRP offers low end-to-end delay and high delivery ratio with varying traffic density, while resolving the problem of frequent link failures

    A Novel Data Dissemination Scheme in Vehicular Networks for Intelligent Transportation System Applications

    Get PDF
    Numerous local incidents occur on road networks daily many of which may lead to congestion and safety hazards. If vehicles can be provided with information about such incidents or traffic conditions in advance, the quality of driving in terms of time, distance, and safety can be improved significantly. Vehicular Ad Hoc Networks (VANETs) have recently emerged as an effective tool for improving road safety through the propagation of warning messages among the vehicles in the network about potential obstacles on the road ahead. This research has presented an effective warning data dissemination scheme which deploys relay strategy and concept of Region of Interest (RoI). A warning data message is characterized as spatio-temporal, implying that both the location and the time of an incident must be considered. Factors such as the type of warning message, the layout of the road network, the traffic density and the capacity of alternative roads are influential in determining the RoI in which the warning message needs to be propagated. In the developed scheme, the type of warning message is taken into account for the determination of the RoI so that the more severe the incident, the wider the RoI. In the selection of the relay point, the border relay area in which the relay point is placed, is adapted to the traffic density so that the higher the traffic density , the narrower the relay area. Traffic statistics are used to calculate the RoI, which is then enclosed in the warning message so that the message is not retransmitted beyond the RoI. Also, the responsibility for retransmitting the message is assigned to the relay node. The data is then disseminated effectively so that vehicles in areas unrelated to the incident are not informed. The primary objective of this research is to provide better understanding of the dissemination of warning data in the context of a vehicular network with the ultimate goal of increasing the possibility of using VANETs for safety applications

    Quality of service aware data dissemination in vehicular Ad Hoc networks

    Full text link
    Des systèmes de transport intelligents (STI) seront éventuellement fournis dans un proche avenir pour la sécurité et le confort des personnes lors de leurs déplacements sur les routes. Les réseaux ad-hoc véhiculaires (VANETs) représentent l'élément clé des STI. Les VANETs sont formés par des véhicules qui communiquent entre eux et avec l'infrastructure. En effet, les véhicules pourront échanger des messages qui comprennent, par exemple, des informations sur la circulation routière, les situations d'urgence et les divertissements. En particulier, les messages d'urgence sont diffusés par des véhicules en cas d'urgence (p.ex. un accident de voiture); afin de permettre aux conducteurs de réagir à temps (p.ex., ralentir), les messages d'urgence doivent être diffusés de manière fiable dans un délai très court. Dans les VANETs, il existe plusieurs facteurs, tels que le canal à pertes, les terminaux cachés, les interférences et la bande passante limitée, qui compliquent énormément la satisfaction des exigences de fiabilité et de délai des messages d'urgence. Dans cette thèse, en guise de première contribution, nous proposons un schéma de diffusion efficace à plusieurs sauts, appelé Dynamic Partitioning Scheme (DPS), pour diffuser les messages d'urgence. DPS calcule les tailles de partitions dynamiques et le calendrier de transmission pour chaque partition; à l'intérieur de la zone arrière de l'expéditeur, les partitions sont calculées de sorte qu'en moyenne chaque partition contient au moins un seul véhicule; l'objectif est de s'assurer que seul un véhicule dans la partition la plus éloignée (de l'expéditeur) est utilisé pour diffuser le message, jusqu'au saut suivant; ceci donne lieu à un délai d'un saut plus court. DPS assure une diffusion rapide des messages d'urgence. En outre, un nouveau mécanisme d'établissement de liaison, qui utilise des tonalités occupées, est proposé pour résoudre le problème du problème de terminal caché. Dans les VANETs, la Multidiffusion, c'est-à-dire la transmission d'un message d'une source à un nombre limité de véhicules connus en tant que destinations, est très importante. Par rapport à la diffusion unique, avec Multidiffusion, la source peut simultanément prendre en charge plusieurs destinations, via une arborescence de multidiffusion, ce qui permet d'économiser de la bande passante et de réduire la congestion du réseau. Cependant, puisque les VANETs ont une topologie dynamique, le maintien de la connectivité de l'arbre de multidiffusion est un problème majeur. Comme deuxième contribution, nous proposons deux approches pour modéliser l'utilisation totale de bande passante d'une arborescence de multidiffusion: (i) la première approche considère le nombre de segments de route impliqués dans l'arbre de multidiffusion et (ii) la seconde approche considère le nombre d'intersections relais dans l'arbre de multidiffusion. Une heuristique est proposée pour chaque approche. Pour assurer la qualité de service de l'arbre de multidiffusion, des procédures efficaces sont proposées pour le suivi des destinations et la surveillance de la qualité de service des segments de route. Comme troisième contribution, nous étudions le problème de la congestion causée par le routage du trafic de données dans les VANETs. Nous proposons (1) une approche de routage basée sur l’infonuagique qui, contrairement aux approches existantes, prend en compte les chemins de routage existants qui relaient déjà les données dans les VANETs. Les nouvelles demandes de routage sont traitées de sorte qu'aucun segment de route ne soit surchargé par plusieurs chemins de routage croisés. Au lieu d'acheminer les données en utilisant des chemins de routage sur un nombre limité de segments de route, notre approche équilibre la charge des données en utilisant des chemins de routage sur l'ensemble des tronçons routiers urbains, dans le but d'empêcher, dans la mesure du possible, les congestions locales dans les VANETs; et (2) une approche basée sur le réseau défini par logiciel (SDN) pour surveiller la connectivité VANET en temps réel et les délais de transmission sur chaque segment de route. Les données de surveillance sont utilisées en entrée de l'approche de routage.Intelligent Transportation Systems (ITS) will be eventually provided in the near future for both safety and comfort of people during their travel on the roads. Vehicular ad-hoc Networks (VANETs), represent the key component of ITS. VANETs consist of vehicles that communicate with each other and with the infrastructure. Indeed, vehicles will be able to exchange messages that include, for example, information about road traffic, emergency situations, and entertainment. Particularly, emergency messages are broadcasted by vehicles in case of an emergency (e.g., car accident); in order to allow drivers to react in time (e.g., slow down), emergency messages must be reliably disseminated with very short delay. In VANETs, there are several factors, such as lossy channel, hidden terminals, interferences and scarce bandwidth, which make satisfying reliability and delay requirements of emergency messages very challenging. In this thesis, as the first contribution, we propose a reliable time-efficient and multi-hop broadcasting scheme, called Dynamic Partitioning Scheme (DPS), to disseminate emergency messages. DPS computes dynamic partition sizes and the transmission schedule for each partition; inside the back area of the sender, the partitions are computed such that in average each partition contains at least a single vehicle; the objective is to ensure that only a vehicle in the farthest partition (from the sender) is used to disseminate the message, to next hop, resulting in shorter one hop delay. DPS ensures fast dissemination of emergency messages. Moreover, a new handshaking mechanism, that uses busy tones, is proposed to solve the problem of hidden terminal problem. In VANETs, Multicasting, i.e. delivering a message from a source to a limited known number of vehicles as destinations, is very important. Compared to Unicasting, with Multicasting, the source can simultaneously support multiple destinations, via a multicast tree, saving bandwidth and reducing overall communication congestion. However, since VANETs have a dynamic topology, maintaining the connectivity of the multicast tree is a major issue. As the second contribution, we propose two approaches to model total bandwidth usage of a multicast tree: (i) the first approach considers the number of road segments involved in the multicast tree and (ii) the second approach considers the number of relaying intersections involved in the multicast tree. A heuristic is proposed for each approach. To ensure QoS of the multicasting tree, efficient procedures are proposed for tracking destinations and monitoring QoS of road segments. As the third contribution, we study the problem of network congestion in routing data traffic in VANETs. We propose (1) a Cloud-based routing approach that, in opposition to existing approaches, takes into account existing routing paths which are already relaying data in VANETs. New routing requests are processed such that no road segment gets overloaded by multiple crossing routing paths. Instead of routing over a limited set of road segments, our approach balances the load of communication paths over the whole urban road segments, with the objective to prevent, whenever possible, local congestions in VANETs; and (2) a Software Defined Networking (SDN) based approach to monitor real-time VANETs connectivity and transmission delays on each road segment. The monitoring data is used as input to the routing approach

    DESIGN OF EFFICIENT IN-NETWORK DATA PROCESSING AND DISSEMINATION FOR VANETS

    Get PDF
    By providing vehicle-to-vehicle and vehicle-to-infrastructure wireless communications, vehicular ad hoc networks (VANETs), also known as the “networks on wheels”, can greatly enhance traffic safety, traffic efficiency and driving experience for intelligent transportation system (ITS). However, the unique features of VANETs, such as high mobility and uneven distribution of vehicular nodes, impose critical challenges of high efficiency and reliability for the implementation of VANETs. This dissertation is motivated by the great application potentials of VANETs in the design of efficient in-network data processing and dissemination. Considering the significance of message aggregation, data dissemination and data collection, this dissertation research targets at enhancing the traffic safety and traffic efficiency, as well as developing novel commercial applications, based on VANETs, following four aspects: 1) accurate and efficient message aggregation to detect on-road safety relevant events, 2) reliable data dissemination to reliably notify remote vehicles, 3) efficient and reliable spatial data collection from vehicular sensors, and 4) novel promising applications to exploit the commercial potentials of VANETs. Specifically, to enable cooperative detection of safety relevant events on the roads, the structure-less message aggregation (SLMA) scheme is proposed to improve communication efficiency and message accuracy. The scheme of relative position based message dissemination (RPB-MD) is proposed to reliably and efficiently disseminate messages to all intended vehicles in the zone-of-relevance in varying traffic density. Due to numerous vehicular sensor data available based on VANETs, the scheme of compressive sampling based data collection (CS-DC) is proposed to efficiently collect the spatial relevance data in a large scale, especially in the dense traffic. In addition, with novel and efficient solutions proposed for the application specific issues of data dissemination and data collection, several appealing value-added applications for VANETs are developed to exploit the commercial potentials of VANETs, namely general purpose automatic survey (GPAS), VANET-based ambient ad dissemination (VAAD) and VANET based vehicle performance monitoring and analysis (VehicleView). Thus, by improving the efficiency and reliability in in-network data processing and dissemination, including message aggregation, data dissemination and data collection, together with the development of novel promising applications, this dissertation will help push VANETs further to the stage of massive deployment
    corecore