51,705 research outputs found

    An audio-based sports video segmentation and event detection algorithm

    Get PDF
    In this paper, we present an audio-based event detection algorithm shown to be effective when applied to Soccer video. The main benefit of this approach is the ability to recognise patterns that display high levels of crowd response correlated to key events. The soundtrack from a Soccer sequence is first parameterised using Mel-frequency Cepstral coefficients. It is then segmented into homogenous components using a windowing algorithm with a decision process based on Bayesian model selection. This decision process eliminated the need for defining a heuristic set of rules for segmentation. Each audio segment is then labelled using a series of Hidden Markov model (HMM) classifiers, each a representation of one of 6 predefined semantic content classes found in Soccer video. Exciting events are identified as those segments belonging to a crowd cheering class. Experimentation indicated that the algorithm was more effective for classifying crowd response when compared to traditional model-based segmentation and classification techniques

    Using Sensor Metadata Streams to Identify Topics of Local Events in the City

    Get PDF
    In this paper, we study the emerging Information Retrieval (IR) task of local event retrieval using sensor metadata streams. Sensor metadata streams include information such as the crowd density from video processing, audio classifications, and social media activity. We propose to use these metadata streams to identify the topics of local events within a city, where each event topic corresponds to a set of terms representing a type of events such as a concert or a protest. We develop a supervised approach that is capable of mapping sensor metadata observations to an event topic. In addition to using a variety of sensor metadata observations about the current status of the environment as learning features, our approach incorporates additional background features to model cyclic event patterns. Through experimentation with data collected from two locations in a major Spanish city, we show that our approach markedly outperforms an alternative baseline. We also show that modelling background information improves event topic identification

    BodySpace: inferring body pose for natural control of a music player

    Get PDF
    We describe the BodySpace system, which uses inertial sensing and pattern recognition to allow the gestural control of a music player by placing the device at different parts of the body. We demonstrate a new approach to the segmentation and recognition of gestures for this kind of application and show how simulated physical model-based techniques can shape gestural interaction

    Designing Scalable Business Models

    Full text link
    Digital business models are often designed for rapid growth, and some relatively young companies have indeed achieved global scale. However despite the visibility and importance of this phenomenon, analysis of scale and scalability remains underdeveloped in management literature. When it is addressed, analysis of this phenomenon is often over-influenced by arguments about economies of scale in production and distribution. To redress this omission, this paper draws on economic, organization and technology management literature to provide a detailed examination of the sources of scaling in digital businesses. We propose three mechanisms by which digital business models attempt to gain scale: engaging both non- paying users and paying customers; organizing customer engagement to allow self- customization; and orchestrating networked value chains, such as platforms or multi-sided business models. Scaling conditions are discussed, and propositions developed and illustrated with examples of big data entrepreneurial firms

    Enhancing timbre model using MFCC and its time derivatives for music similarity estimation

    No full text
    One of the popular methods for content-based music similarity estimation is to model timbre with MFCC as a single multivariate Gaussian with full covariance matrix, then use symmetric Kullback-Leibler divergence. From the field of speech recognition, we propose to use the same approach on the MFCCs’ time derivatives to enhance the timbre model. The Gaussian models for the delta and acceleration coefficients are used to create their respective distance matrix. The distance matrices are then combined linearly to form a full distance matrix for music similarity estimation. In our experiments on two datasets, our novel approach performs better than using MFCC alone.Moreover, performing genre classification using k-NN showed that the accuracies obtained are already close to the state-of-the-art
    corecore