246 research outputs found

    Planning in constraint space for multi-body manipulation tasks

    Get PDF
    Robots are inherently limited by physical constraints on their link lengths, motor torques, battery power and structural rigidity. To thrive in circumstances that push these limits, such as in search and rescue scenarios, intelligent agents can use the available objects in their environment as tools. Reasoning about arbitrary objects and how they can be placed together to create useful structures such as ramps, bridges or simple machines is critical to push beyond one's physical limitations. Unfortunately, the solution space is combinatorial in the number of available objects and the configuration space of the chosen objects and the robot that uses the structure is high dimensional. To address these challenges, we propose using constraint satisfaction as a means to test the feasibility of candidate structures and adopt search algorithms in the classical planning literature to find sufficient designs. The key idea is that the interactions between the components of a structure can be encoded as equality and inequality constraints on the configuration spaces of the respective objects. Furthermore, constraints that are induced by a broadly defined action, such as placing an object on another, can be grouped together using logical representations such as Planning Domain Definition Language (PDDL). Then, a classical planning search algorithm can reason about which set of constraints to impose on the available objects, iteratively creating a structure that satisfies the task goals and the robot constraints. To demonstrate the effectiveness of this framework, we present both simulation and real robot results with static structures such as ramps, bridges and stairs, and quasi-static structures such as lever-fulcrum simple machines.Ph.D

    Research Trends and Outlooks in Assembly Line Balancing Problems

    Get PDF
    This paper presents the findings from the survey of articles published on the assembly line balancing problems (ALBPs) during 2014-2018. Before proceeding a comprehensive literature review, the ineffectiveness of the previous ALBP classification structures is discussed and a new classification scheme based on the layout configurations of assembly lines is subsequently proposed. The research trend in each layout of assembly lines is highlighted through the graphical presentations. The challenges in the ALBPs are also pinpointed as a technical guideline for future research works

    Design and control of a soccer-playing humanoid robot

    Get PDF
    Master'sMASTER OF ENGINEERIN

    The Dynamic Multi-objective Multi-vehicle Covering Tour Problem

    Get PDF
    This work introduces a new routing problem called the Dynamic Multi-Objective Multi-vehicle Covering Tour Problem (DMOMCTP). The DMOMCTPs is a combinatorial optimization problem that represents the problem of routing multiple vehicles to survey an area in which unpredictable target nodes may appear during execution. The formulation includes multiple objectives that include minimizing the cost of the combined tour cost, minimizing the longest tour cost, minimizing the distance to nodes to be covered and maximizing the distance to hazardous nodes. This study adapts several existing algorithms to the problem with several operator and solution encoding variations. The efficacy of this set of solvers is measured against six problem instances created from existing Traveling Salesman Problem instances which represent several real countries. The results indicate that repair operators, variable length solution encodings and variable-length operators obtain a better approximation of the true Pareto front

    Proceedings of the NASA Conference on Space Telerobotics, volume 4

    Get PDF
    Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotic technology to the space systems planned for the 1990's and beyond. Volume 4 contains papers related to the following subject areas: manipulator control; telemanipulation; flight experiments (systems and simulators); sensor-based planning; robot kinematics, dynamics, and control; robot task planning and assembly; and research activities at the NASA Langley Research Center

    Reinforcement planning for resource allocation and constraint satisfaction

    Get PDF

    Scheduling of flexible manufacturing systems integrating petri nets and artificial intelligence methods.

    Get PDF
    The work undertaken in this thesis is about the integration of two well-known methodologies: Petri net (PN) model Ii ng/analysis of industrial production processes and Artificial Intelligence (AI) optimisation search techniques. The objective of this integration is to demonstrate its potential in solving a difficult and widely studied problem, the scheduling of Flexible Manufacturing Systems (FIVIS). This work builds on existing results that clearly show the convenience of PNs as a modelling tool for FIVIS. It addresses the problem of the integration of PN and Al based search methods. Whilst this is recognised as a potentially important approach to the scheduling of FIVIS there is a lack of any clear evidence that practical systems might be built. This thesis presents a novel scheduling methodology that takes forward the current state of the art in the area by: Firstly presenting a novel modelling procedure based on a new class of PN (cb-NETS) and a language to define the essential features of basic FIVIS, demonstrating that the inclusion of high level FIVIS constraints is straight forward. Secondly, we demonstrate that PN analysis is useful in reducing search complexity and presents two main results: a novel heuristic function based on PN analysis that is more efficient than existing methods and a novel reachability scheme that avoids futile exploration of candidate schedules. Thirdly a novel scheduling algorithm that overcomes the efficiency drawbacks of previous algorithms is presented. This algorithm satisfactorily overcomes the complexity issue while achieving very promising results in terms of optimality. Finally, this thesis presents a novel hybrid scheduler that demonstrates the convenience of the use of PN as a representation paradigm to support hybridisation between traditional OR methods, Al systematic search and stochastic optimisation algorithms. Initial results show that the approach is promising

    Tabu Search: A Comparative Study

    Get PDF

    Robot Motion Planning Under Topological Constraints

    Get PDF
    My thesis addresses the the problem of manipulation using multiple robots with cables. I study how robots with cables can tow objects in the plane, on the ground and on water, and how they can carry suspended payloads in the air. Specifically, I focus on planning optimal trajectories for robots. Path planning or trajectory generation for robotic systems is an active area of research in robotics. Many algorithms have been developed to generate path or trajectory for different robotic systems. One can classify planning algorithms into two broad categories. The first one is graph-search based motion planning over discretized configuration spaces. These algorithms are complete and quite efficient for finding optimal paths in cluttered 2-D and 3-D environments and are widely used [48]. The other class of algorithms are optimal control based methods. In most cases, the optimal control problem to generate optimal trajectories can be framed as a nonlinear and non convex optimization problem which is hard to solve. Recent work has attempted to overcome these shortcomings [68]. Advances in computational power and more sophisticated optimization algorithms have allowed us to solve more complex problems faster. However, our main interest is incorporating topological constraints. Topological constraints naturally arise when cables are used to wrap around objects. They are also important when robots have to move one way around the obstacles rather than the other way around. Thus I consider the optimal trajectory generation problem under topological constraints, and pursue problems that can be solved in finite-time, guaranteeing global optimal solutions. In my thesis, I first consider the problem of planning optimal trajectories around obstacles using optimal control methodologies. I then present the mathematical framework and algorithms for multi-robot topological exploration of unknown environments in which the main goal is to identify the different topological classes of paths. Finally, I address the manipulation and transportation of multiple objects with cables. Here I consider teams of two or three ground robots towing objects on the ground, two or three aerial robots carrying a suspended payload, and two boats towing a boom with applications to oil skimming and clean up. In all these problems, it is important to consider the topological constraints on the cable configurations as well as those on the paths of robot. I present solutions to the trajectory generation problem for all of these problems
    corecore