293 research outputs found

    Improving the scalability of parallel N-body applications with an event driven constraint based execution model

    Full text link
    The scalability and efficiency of graph applications are significantly constrained by conventional systems and their supporting programming models. Technology trends like multicore, manycore, and heterogeneous system architectures are introducing further challenges and possibilities for emerging application domains such as graph applications. This paper explores the space of effective parallel execution of ephemeral graphs that are dynamically generated using the Barnes-Hut algorithm to exemplify dynamic workloads. The workloads are expressed using the semantics of an Exascale computing execution model called ParalleX. For comparison, results using conventional execution model semantics are also presented. We find improved load balancing during runtime and automatic parallelism discovery improving efficiency using the advanced semantics for Exascale computing.Comment: 11 figure

    Run-time and compile-time support for adaptive irregular problems

    Get PDF
    In adaptive irregular problems the data arrays are accessed via indirection arrays, and data access patterns change during computation. Implementing such problems on distributed memory machines requires support for dynamic data partitioning, efficient preprocessing and fast data migration. This research presents efficient runtime primitives for such problems. This new set of primitives is part of the CHAOS library. It subsumes the previous PARTI library which targeted only static irregular problems. To demonstrate the efficacy of the runtime support, two real adaptive irregular applications have been parallelized using CHAOS primitives: a molecular dynamics code (CHARMM) and a particle-in-cell code (DSMC). The paper also proposes extensions to Fortran D which can allow compilers to generate more efficient code for adaptive problems. These language extensions have been implemented in the Syracuse Fortran 90D/HPF prototype compiler. The performance of the compiler parallelized codes is compared with the hand parallelized versions

    Achieving High Speed CFD simulations: Optimization, Parallelization, and FPGA Acceleration for the unstructured DLR TAU Code

    Get PDF
    Today, large scale parallel simulations are fundamental tools to handle complex problems. The number of processors in current computation platforms has been recently increased and therefore it is necessary to optimize the application performance and to enhance the scalability of massively-parallel systems. In addition, new heterogeneous architectures, combining conventional processors with specific hardware, like FPGAs, to accelerate the most time consuming functions are considered as a strong alternative to boost the performance. In this paper, the performance of the DLR TAU code is analyzed and optimized. The improvement of the code efficiency is addressed through three key activities: Optimization, parallelization and hardware acceleration. At first, a profiling analysis of the most time-consuming processes of the Reynolds Averaged Navier Stokes flow solver on a three-dimensional unstructured mesh is performed. Then, a study of the code scalability with new partitioning algorithms are tested to show the most suitable partitioning algorithms for the selected applications. Finally, a feasibility study on the application of FPGAs and GPUs for the hardware acceleration of CFD simulations is presented
    corecore