1,144 research outputs found

    Event-triggered distributed H∞ state estimation with packet dropouts through sensor networks

    Get PDF
    This study is concerned with the event-triggered distributed H∞ state estimation problem for a class of discrete-time stochastic non-linear systems with packet dropouts in a sensor network. An event-triggered communication mechanism is adopted over the sensor network with hope to reduce the communication burden and the energy consumption, where the measurements on each sensor are transmitted only when a certain triggering condition is violated. Furthermore, a novel distributed state estimator is designed where the available innovations are not only from the individual sensor, but also from its neighbouring ones according to the given topology. The purpose of the problem under consideration is to design a set of distributed state estimators such that the dynamics of estimation errors is exponentially mean-square stable and also the prespecified H∞ disturbance rejection attenuation level is guaranteed. By utilising the property of the Kronecker product and the stochastic analysis approaches, sufficient conditions are established under which the addressed state estimation problem is recast as a convex optimisation one that can be easily solved via available software packages. Finally, a simulation example is utilised to illustrate the usefulness of the proposed design scheme of event-triggered distributed state estimators.This work was supported in part by Royal Society of the UK, the National Natural Science Foundation of China under Grants 61329301, 61203139, 61473076, 61374127 and 61422301, the Shanghai Rising-Star Program of China under Grant 13QA1400100, the ShuGuang project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation under Grant 13SG34, the Fundamental Research Funds for the Central Universities, DHU Distinguished Young Professor Program, and the Alexander von Humboldt Foundation of Germany

    Fuzzy Logic Control Based QoS Management in Wireless Sensor/Actuator Networks

    Full text link
    Wireless sensor/actuator networks (WSANs) are emerging rapidly as a new generation of sensor networks. Despite intensive research in wireless sensor networks (WSNs), limited work has been found in the open literature in the field of WSANs. In particular, quality-of-service (QoS) management in WSANs remains an important issue yet to be investigated. As an attempt in this direction, this paper develops a fuzzy logic control based QoS management (FLC-QM) scheme for WSANs with constrained resources and in dynamic and unpredictable environments. Taking advantage of the feedback control technology, this scheme deals with the impact of unpredictable changes in traffic load on the QoS of WSANs. It utilizes a fuzzy logic controller inside each source sensor node to adapt sampling period to the deadline miss ratio associated with data transmission from the sensor to the actuator. The deadline miss ratio is maintained at a pre-determined desired level so that the required QoS can be achieved. The FLC-QM has the advantages of generality, scalability, and simplicity. Simulation results show that the FLC-QM can provide WSANs with QoS support.Comment: 13 pages, 8 figures; Open Access at http://www.mdpi.org/sensor

    Stability analysis of token-based wireless networked control systems under deception attacks

    Get PDF
    Currently, cyber-security has attracted a lot of attention, in particular in wireless industrial control networks (WICNs). In this paper, the stability of wireless networked control systems (WNCSs) under deception, attacks is studied with a token-based protocol applied to the data link layer (DLL) of WICNS. Since deception attacks cause the stability problem of WNCSs by changing the data transmitted over a wireless network, it is important to detect deception attacks, discard the injected false data and compensate for the missing data (i.e., the discarded original data with the injected false data). The main contributions of this paper are: 1) With respect to the character of the token-based protocol, a switched system model is developed. Different from the traditional switched system where the number of subsystems is fixed, in our new model this number will be changed under deception attacks. 2) For this model, a new Kalman filter (KF) is developed for the purpose of attack detection and the missing data reconstruction. 3) For the given linear feedback WNCSs, when the noise level is below a threshold derived in this paper, the maximum allowable duration of deception attacks is obtained to maintain the exponential stability of the system. Finally, a numerical example based on a linearized model of an inverted pendulum is provided to demonstrate the proposed design

    Distributed resilient filtering of large-scale systems with channel scheduling

    Get PDF
    summary:This paper addresses the distributed resilient filtering for discrete-time large-scale systems (LSSs) with energy constraints, where their information are collected by sensor networks with a same topology structure. As a typical model of information physics systems, LSSs have an inherent merit of modeling wide area power systems, automation processes and so forth. In this paper, two kinds of channels are employed to implement the information transmission in order to extend the service time of sensor nodes powered by energy-limited batteries. Specifically, the one has the merit of high reliability by sacrificing energy cost and the other reduces the energy cost but could result in packet loss. Furthermore, a communication scheduling matrix is introduced to govern the information transmission in these two kind of channels. In this scenario, a novel distributed filter is designed by fusing the compensated neighboring estimation. Then, two matrix-valued functions are derived to obtain the bounds of the covariance matrices of one-step prediction errors and the filtering errors. In what follows, the desired gain matrices are analytically designed to minimize the provided bounds with the help of the gradient-based approach and the mathematical induction. Furthermore, the effect on filtering performance from packet loss is profoundly discussed and it is claimed that the filtering performance becomes better when the probability of packet loss decreases. Finally, a simulation example on wide area power systems is exploited to check the usefulness of the designed distributed filter

    Fault estimation for time-varying systems with Round-Robin protocol

    Get PDF
    summary:This paper is concerned with the design problem of finite-horizon HH_\infty fault estimator for a class of nonlinear time-varying systems with Round-Robin protocol scheduling. The faults are assumed to occur in a random way governed by a Bernoulli distributed white sequence. The communication between the sensor nodes and fault estimators is implemented via a shared network. In order to prevent the data from collisions, a Round-Robin protocol is utilized to orchestrate the transmission of sensor nodes. By means of the stochastic analysis technique and the completing squares method, a necessary and sufficient condition is established for the existence of fault estimator ensuring that the estimation error dynamics satisfies the prescribed HH_\infty constraint. The time-varying parameters of fault estimator are obtained by recursively solving a set of coupled backward Riccati difference equations. A simulation example is given to demonstrate the effectiveness of the proposed design scheme of the fault estimator
    corecore