8,022 research outputs found

    Tracking dynamic interactions between structural and functional connectivity : a TMS/EEG-dMRI study

    Get PDF
    Transcranial magnetic stimulation (TMS) in combination with neuroimaging techniques allows to measure the effects of a direct perturbation of the brain. When coupled with high-density electroencephalography (TMS/hd-EEG), TMS pulses revealed electrophysiological signatures of different cortical modules in health and disease. However, the neural underpinnings of these signatures remain unclear. Here, by applying multimodal analyses of cortical response to TMS recordings and diffusion magnetic resonance imaging (dMRI) tractography, we investigated the relationship between functional and structural features of different cortical modules in a cohort of awake healthy volunteers. For each subject, we computed directed functional connectivity interactions between cortical areas from the source-reconstructed TMS/hd-EEG recordings and correlated them with the correspondent structural connectivity matrix extracted from dMRI tractography, in three different frequency bands (alpha, beta, gamma) and two sites of stimulation (left precuneus and left premotor). Each stimulated area appeared to mainly respond to TMS by being functionally elicited in specific frequency bands, that is, beta for precuneus and gamma for premotor. We also observed a temporary decrease in the whole-brain correlation between directed functional connectivity and structural connectivity after TMS in all frequency bands. Notably, when focusing on the stimulated areas only, we found that the structure-function correlation significantly increases over time in the premotor area controlateral to TMS. Our study points out the importance of taking into account the major role played by different cortical oscillations when investigating the mechanisms for integration and segregation of information in the human brain

    Implementation and evaluation of simultaneous video-electroencephalography and functional magnetic resonance imaging

    Get PDF
    The objective of this study was to demonstrate that the addition of simultaneous and synchronised video to electroencephalography (EEG)-correlated functional magnetic resonance imaging (fMRI) could increase recorded information without data quality reduction. We investigated the effect of placing EEG, video equipment and their required power supplies inside the scanner room, on EEG, video and MRI data quality, and evaluated video-EEG-fMRI by modelling a hand motor task. Gradient-echo, echo-planner images (EPI) were acquired on a 3-T MRI scanner at variable camera positions in a test object [with and without radiofrequency (RF) excitation], and human subjects. EEG was recorded using a commercial MR-compatible 64-channel cap and amplifiers. Video recording was performed using a two-camera custom-made system with EEG synchronization. An in-house script was used to calculate signal to fluctuation noise ratio (SFNR) from EPI in test object with variable camera positions and in human subjects with and without concurrent video recording. Five subjects were investigated with video-EEG-fMRI while performing hand motor task. The fMRI time series data was analysed using statistical parametric mapping, by building block design general linear models which were paradigm prescribed and video based. Introduction of the cameras did not alter the SFNR significantly, nor did it show any signs of spike noise during RF off conditions. Video and EEG quality also did not show any significant artefact. The Statistical Parametric Mapping{T} maps from video based design revealed additional blood oxygen level-dependent responses in the expected locations for non-compliant subjects compared to the paradigm prescribed design. We conclude that video-EEG-fMRI set up can be implemented without affecting the data quality significantly and may provide valuable information on behaviour to enhance the analysis of fMRI data

    Enhanced amplitude modulations contribute to the Lombard intelligibility benefit: Evidence from the Nijmegen Corpus of Lombard Speech

    No full text
    Speakers adjust their voice when talking in noise, which is known as Lombard speech. These acoustic adjustments facilitate speech comprehension in noise relative to plain speech (i.e., speech produced in quiet). However, exactly which characteristics of Lombard speech drive this intelligibility benefit in noise remains unclear. This study assessed the contribution of enhanced amplitude modulations to the Lombard speech intelligibility benefit by demonstrating that (1) native speakers of Dutch in the Nijmegen Corpus of Lombard Speech (NiCLS) produce more pronounced amplitude modulations in noise vs. in quiet; (2) more enhanced amplitude modulations correlate positively with intelligibility in a speech-in-noise perception experiment; (3) transplanting the amplitude modulations from Lombard speech onto plain speech leads to an intelligibility improvement, suggesting that enhanced amplitude modulations in Lombard speech contribute towards intelligibility in noise. Results are discussed in light of recent neurobiological models of speech perception with reference to neural oscillators phase-locking to the amplitude modulations in speech, guiding the processing of speech

    Simultaneous multiplane imaging with reverberation multiphoton microscopy

    Full text link
    Multiphoton microscopy (MPM) has gained enormous popularity over the years for its capacity to provide high resolution images from deep within scattering samples1. However, MPM is generally based on single-point laser-focus scanning, which is intrinsically slow. While imaging speeds as fast as video rate have become routine for 2D planar imaging, such speeds have so far been unattainable for 3D volumetric imaging without severely compromising microscope performance. We demonstrate here 3D volumetric (multiplane) imaging at the same speed as 2D planar (single plane) imaging, with minimal compromise in performance. Specifically, multiple planes are acquired by near-instantaneous axial scanning while maintaining 3D micron-scale resolution. Our technique, called reverberation MPM, is well adapted for large-scale imaging in scattering media with low repetition-rate lasers, and can be implemented with conventional MPM as a simple add-on.Accepted manuscrip
    • …
    corecore