17 research outputs found

    Partition-Based GTS Adjustment for Wireless Sensor Networks

    Get PDF
    The personal area network (PAN) coordinator can assign a guaranteed time slot (GTS) to allocate a particular duration for requested devices in IEEE 802.15.4 beacon-enabled mode. The main challenge in the GTS mechanism is how to let the PAN coordinator allocate time slot duration for the devices which request a GTS. If the allocated devices use the GTS partially or the traffic pattern is not suitable, wasted bandwidth will increase, which degrades the performance of the network. In order to overcome the abovementioned problem, this paper proposes the Partitioned GTS Allocation Scheme (PEGAS) for IEEE 802.15.4 networks. PEGAS aims to decide the precise moment for the starting time, the end, and the length of the GTS allocation for requested devices taking into account the values of the superframe order, superframe duration, data packet length, and arrival data packet rate. Our simulation results showed that the proposed mechanism outperforms the IEEE 802.15.4 standard in terms of the total number of transmitted packets, throughput, energy efficiency, latency, bandwidth utilization, and contention access period (CAP) length ratio

    IEEE 802.15.4 Frame Aggregation Enhancement to Provide High Performance in Life-Critical Patient Monitoring Systems

    Get PDF
    In wireless body area sensor networks (WBASNs), Quality of Service (QoS) provision for patient monitoring systems in terms of time-critical deadlines, high throughput and energy efficiency is a challenging task. The periodic data from these systems generates a large number of small packets in a short time period which needs an efficient channel access mechanism. The IEEE 802.15.4 standard is recommended for low power devices and widely used for many wireless sensor networks applications. It provides a hybrid channel access mechanism at the Media Access Control (MAC) layer which plays a key role in overall successful transmission in WBASNs. There are many WBASN’s MAC protocols that use this hybrid channel access mechanism in variety of sensor applications. However, these protocols are less efficient for patient monitoring systems where life critical data requires limited delay, high throughput and energy efficient communication simultaneously. To address these issues, this paper proposes a frame aggregation scheme by using the aggregated-MAC protocol data unit (A-MPDU) which works with the IEEE 802.15.4 MAC layer. To implement the scheme accurately, we develop a traffic patterns analysis mechanism to understand the requirements of the sensor nodes in patient monitoring systems, then model the channel access to find the performance gap on the basis of obtained requirements, finally propose the design based on the needs of patient monitoring systems. The mechanism is initially verified using numerical modelling and then simulation is conducted using NS2.29, Castalia 3.2 and OMNeT++. The proposed scheme provides the optimal performance considering the required Qo
    corecore