860 research outputs found

    Prognostics and health management for maintenance practitioners - Review, implementation and tools evaluation.

    Get PDF
    In literature, prognostics and health management (PHM) systems have been studied by many researchers from many different engineering fields to increase system reliability, availability, safety and to reduce the maintenance cost of engineering assets. Many works conducted in PHM research concentrate on designing robust and accurate models to assess the health state of components for particular applications to support decision making. Models which involve mathematical interpretations, assumptions and approximations make PHM hard to understand and implement in real world applications, especially by maintenance practitioners in industry. Prior knowledge to implement PHM in complex systems is crucial to building highly reliable systems. To fill this gap and motivate industry practitioners, this paper attempts to provide a comprehensive review on PHM domain and discusses important issues on uncertainty quantification, implementation aspects next to prognostics feature and tool evaluation. In this paper, PHM implementation steps consists of; (1) critical component analysis, (2) appropriate sensor selection for condition monitoring (CM), (3) prognostics feature evaluation under data analysis and (4) prognostics methodology and tool evaluation matrices derived from PHM literature. Besides PHM implementation aspects, this paper also reviews previous and on-going research in high-speed train bogies to highlight problems faced in train industry and emphasize the significance of PHM for further investigations

    Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review

    Get PDF
    With the privatization and intense competition that characterize the volatile energy sector, the gas turbine industry currently faces new challenges of increasing operational flexibility, reducing operating costs, improving reliability and availability while mitigating the environmental impact. In this complex, changing sector, the gas turbine community could address a set of these challenges by further development of high fidelity, more accurate and computationally efficient engine health assessment, diagnostic and prognostic systems. Recent studies have shown that engine gas-path performance monitoring still remains the cornerstone for making informed decisions in operation and maintenance of gas turbines. This paper offers a systematic review of recently developed engine performance monitoring, diagnostic and prognostic techniques. The inception of performance monitoring and its evolution over time, techniques used to establish a high-quality dataset using engine model performance adaptation, and effects of computationally intelligent techniques on promoting the implementation of engine fault diagnosis are reviewed. Moreover, recent developments in prognostics techniques designed to enhance the maintenance decision-making scheme and main causes of gas turbine performance deterioration are discussed to facilitate the fault identification module. The article aims to organize, evaluate and identify patterns and trends in the literature as well as recognize research gaps and recommend new research areas in the field of gas turbine performance-based monitoring. The presented insightful concepts provide experts, students or novice researchers and decision-makers working in the area of gas turbine engines with the state of the art for performance-based condition monitoring

    Vehicle level health assessment through integrated operational scalable prognostic reasoners

    Get PDF
    Today’s aircraft are very complex in design and need constant monitoring of the systems to establish the overall health status. Integrated Vehicle Health Management (IVHM) is a major component in a new future asset management paradigm where a conscious effort is made to shift asset maintenance from a scheduled based approach to a more proactive and predictive approach. Its goal is to maximize asset operational availability while minimising downtime and the logistics footprint through monitoring deterioration of component conditions. IVHM involves data processing which comprehensively consists of capturing data related to assets, monitoring parameters, assessing current or future health conditions through prognostics and diagnostics engine and providing recommended maintenance actions. The data driven prognostics methods usually use a large amount of data to learn the degradation pattern (nominal model) and predict the future health. Usually the data which is run-to-failure used are accelerated data produced in lab environments, which is hardly the case in real life. Therefore, the nominal model is far from the present condition of the vehicle, hence the predictions will not be very accurate. The prediction model will try to follow the nominal models which mean more errors in the prediction, this is a major drawback of the data driven techniques. This research primarily presents the two novel techniques of adaptive data driven prognostics to capture the vehicle operational scalability degradation. Secondary the degradation information has been used as a Health index and in the Vehicle Level Reasoning System (VLRS). Novel VLRS are also presented in this research study. The research described here proposes a condition adaptive prognostics reasoning along with VLRS

    Increasing the robustness of autonomous systems to hardware degradation using machine learning

    Get PDF
    Autonomous systems perform predetermined tasks (missions) with minimum supervision. In most applications, the state of the world changes with time. Sensors are employed to measure part or whole of the world’s state. However, sensors often fail amidst operation; feeding as such decision-making with wrong information about the world. Moreover, hardware degradation may alter dynamic behaviour, and subsequently the capabilities, of an autonomous system; rendering the original mission infeasible. This thesis applies machine learning to yield powerful and robust tools that can facilitate autonomy in modern systems. Incremental kernel regression is used for dynamic modelling. Algorithms of this sort are easy to train and are highly adaptive. Adaptivity allows for model adjustments, whenever the environment of operation changes. Bayesian reasoning provides a rigorous framework for addressing uncertainty. Moreover, using Bayesian Networks, complex inference regarding hardware degradation can be answered. Specifically, adaptive modelling is combined with Bayesian reasoning to yield recursive estimation algorithms that are robust to sensor failures. Two solutions are presented by extending existing recursive estimation algorithms from the robotics literature. The algorithms are deployed on an underwater vehicle and the performance is assessed in real-world experiments. A comparison against standard filters is also provided. Next, the previous algorithms are extended to consider sensor and actuator failures jointly. An algorithm that can detect thruster failures in an Autonomous Underwater Vehicle has been developed. Moreover, the algorithm adapts the dynamic model online to compensate for the detected fault. The performance of this algorithm was also tested in a real-world application. One step further than hardware fault detection, prognostics predict how much longer can a particular hardware component operate normally. Ubiquitous sensors in modern systems render data-driven prognostics a viable solution. However, training is based on skewed datasets; datasets where the samples from the faulty region of operation are much fewer than the ones from the healthy region of operation. This thesis presents a prognostic algorithm that tackles the problem of imbalanced (skewed) datasets

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security

    A Comprehensive Review of Digital Twin -- Part 1: Modeling and Twinning Enabling Technologies

    Full text link
    As an emerging technology in the era of Industry 4.0, digital twin is gaining unprecedented attention because of its promise to further optimize process design, quality control, health monitoring, decision and policy making, and more, by comprehensively modeling the physical world as a group of interconnected digital models. In a two-part series of papers, we examine the fundamental role of different modeling techniques, twinning enabling technologies, and uncertainty quantification and optimization methods commonly used in digital twins. This first paper presents a thorough literature review of digital twin trends across many disciplines currently pursuing this area of research. Then, digital twin modeling and twinning enabling technologies are further analyzed by classifying them into two main categories: physical-to-virtual, and virtual-to-physical, based on the direction in which data flows. Finally, this paper provides perspectives on the trajectory of digital twin technology over the next decade, and introduces a few emerging areas of research which will likely be of great use in future digital twin research. In part two of this review, the role of uncertainty quantification and optimization are discussed, a battery digital twin is demonstrated, and more perspectives on the future of digital twin are shared

    A data-driven failure prognostics method based on mixture of gaussians hidden markov models

    No full text
    International audienceThis paper addresses a data-driven prognostics method for the estimation of the Remaining Useful Life (RUL) and the associated confidence value of bearings. The proposed method is based on the utilization of the Wavelet Packet Decomposition (WPD) technique, and the Mixture of Gaussians Hidden Markov Models (MoG-HMM). The method relies on two phases: an off-line phase, and an on-line phase. During the first phase, the raw data provided by the sensors are first processed to extract features in the form of WPD coefficients. The extracted features are then fed to dedicated learning algorithms to estimate the parameters of a corresponding MoG-HMM, which best fits the degradation phenomenon. The generated model is exploited during the second phase to continuously assess the current health state of the physical component, and to estimate its RUL value with the associated confidence. The developed method is tested on benchmark data taken from the "NASA prognostics data repository" related to several experiments of failures on bearings done under different operating conditions. Furthermore, the method is compared to traditional time-feature prognostics and simulation results are given at the end of the paper. The results of the developed prognostics method, particularly the estimation of the RUL, can help improving the availability, reliability, and security while reducing the maintenance costs. Indeed, the RUL and associated confidence value are relevant information which can be used to take appropriate maintenance and exploitation decisions. In practice, this information may help the maintainers to prepare the necessary material and human resources before the occurrence of a failure. Thus, the traditional maintenance policies involving corrective and preventive maintenance can be replaced by condition based maintenance
    corecore