41 research outputs found

    A Dynamic Bayesian Network Model for Hierarchial Classification and its Application in Predicting Yeast Genes Functions

    Get PDF
    In this paper, we propose a Dynamic Naive Bayesian (DNB) network model for classifying data sets with hierarchical labels. The DNB model is built upon a Naive Bayesian (NB) network, a successful classifier for data with flattened (nonhierarchical) class labels. The problems using flattened class labels for hierarchical classification are addressed in this paper. The DNB has a top-down structure with each level of the class hierarchy modeled as a random variable. We defined augmenting operations to transform class hierarchy into a form that satisfies the probability law. We present algorithms for efficient learning and inference with the DNB model. The learning algorithm can be used to estimate the parameters of the network. The inference algorithm is designed to find the optimal classification path in the class hierarchy. The methods are tested on yeast gene expression data sets, and the classification accuracy with DNB classifier is significantly higher than it is with previous approaches– flattened classification using NB classifier

    Multivariate Models and Algorithms for Systems Biology

    Get PDF
    Rapid advances in high-throughput data acquisition technologies, such as microarraysand next-generation sequencing, have enabled the scientists to interrogate the expression levels of tens of thousands of genes simultaneously. However, challenges remain in developingeffective computational methods for analyzing data generated from such platforms. In thisdissertation, we address some of these challenges. We divide our work into two parts. Inthe first part, we present a suite of multivariate approaches for a reliable discovery of geneclusters, often interpreted as pathway components, from molecular profiling data with replicated measurements. We translate our goal into learning an optimal correlation structure from replicated complete and incomplete measurements. In the second part, we focus on thereconstruction of signal transduction mechanisms in the signaling pathway components. Wepropose gene set based approaches for inferring the structure of a signaling pathway.First, we present a constrained multivariate Gaussian model, referred to as the informed-case model, for estimating the correlation structure from replicated and complete molecular profiling data. Informed-case model generalizes previously known blind-case modelby accommodating prior knowledge of replication mechanisms. Second, we generalize theblind-case model by designing a two-component mixture model. Our idea is to strike anoptimal balance between a fully constrained correlation structure and an unconstrained one.Third, we develop an Expectation-Maximization algorithm to infer the underlying correlation structure from replicated molecular profiling data with missing (incomplete) measurements.We utilize our correlation estimators for clustering real-world replicated complete and incompletemolecular profiling data sets. The above three components constitute the first partof the dissertation. For the structural inference of signaling pathways, we hypothesize a directed signal pathway structure as an ensemble of overlapping and linear signal transduction events. We then propose two algorithms to reverse engineer the underlying signaling pathway structure using unordered gene sets corresponding to signal transduction events. Throughout we treat gene sets as variables and the associated gene orderings as random.The first algorithm has been developed under the Gibbs sampling framework and the secondalgorithm utilizes the framework of simulated annealing. Finally, we summarize our findingsand discuss possible future directions

    Multivariate Models and Algorithms for Systems Biology

    Get PDF
    Rapid advances in high-throughput data acquisition technologies, such as microarraysand next-generation sequencing, have enabled the scientists to interrogate the expression levels of tens of thousands of genes simultaneously. However, challenges remain in developingeffective computational methods for analyzing data generated from such platforms. In thisdissertation, we address some of these challenges. We divide our work into two parts. Inthe first part, we present a suite of multivariate approaches for a reliable discovery of geneclusters, often interpreted as pathway components, from molecular profiling data with replicated measurements. We translate our goal into learning an optimal correlation structure from replicated complete and incomplete measurements. In the second part, we focus on thereconstruction of signal transduction mechanisms in the signaling pathway components. Wepropose gene set based approaches for inferring the structure of a signaling pathway.First, we present a constrained multivariate Gaussian model, referred to as the informed-case model, for estimating the correlation structure from replicated and complete molecular profiling data. Informed-case model generalizes previously known blind-case modelby accommodating prior knowledge of replication mechanisms. Second, we generalize theblind-case model by designing a two-component mixture model. Our idea is to strike anoptimal balance between a fully constrained correlation structure and an unconstrained one.Third, we develop an Expectation-Maximization algorithm to infer the underlying correlation structure from replicated molecular profiling data with missing (incomplete) measurements.We utilize our correlation estimators for clustering real-world replicated complete and incompletemolecular profiling data sets. The above three components constitute the first partof the dissertation. For the structural inference of signaling pathways, we hypothesize a directed signal pathway structure as an ensemble of overlapping and linear signal transduction events. We then propose two algorithms to reverse engineer the underlying signaling pathway structure using unordered gene sets corresponding to signal transduction events. Throughout we treat gene sets as variables and the associated gene orderings as random.The first algorithm has been developed under the Gibbs sampling framework and the secondalgorithm utilizes the framework of simulated annealing. Finally, we summarize our findingsand discuss possible future directions

    Reverse Engineering of Gene Regulatory Networks for Discovery of Novel Interactions in Pathways Using Gene Expression Data

    Get PDF
    A variety of chemicals in the environment have the potential to adversely affect the biological systems. We examined the responses of Rat (Rattus norvegicus) to the RDX exposure and female fathead minnows (FHM, Pimephales promelas) to a model aromatase inhibitor, fadrozole, using a transcriptional network inference approach. Rats were exposed to RDX and fish were exposed to 0 or 30mg/L fadrozole for 8 days. We analyzed gene expression changes using 8000 probes microarrays for rat experiment and 15,000 probe microarrays for fish. We used these changes to infer a transcriptional network. The central nervous system is remarkably plastic in its ability to recover from trauma. We examined recovery from chemicals in rats and fish through changes in transcriptional networks. Transcriptional networks from time series experiments provide a good basis for organizing and studying the dynamic behavior of biological processes. The goal of this work was to identify networks affected by chemical exposure and track changes in these networks as animals recover. The top 1254 significantly changed genes based upon 1.5-fold change and P\u3c 0.05 across all the time points from the fish data and 937 significantly changed genes from rat data were chosen for network modeling using either a Mutual Information network (MIN) or a Graphical Gaussian Model (GGM) or a Dynamic Bayesian Network (DBN) approach. The top interacting genes were queried to find sub-networks, possible biological networks, biochemical pathways, and network topologies impacted after exposure to fadrozole. The methods were able to reconstruct transcriptional networks with few hub structures, some of which were found to be involved in major biological process and molecular function. The resulting network from rat experiment exhibited a clear hub (central in terms of connections and direction) connectivity structure. Genes such as Ania-7, Hnrpdl, Alad, Gapdh, etc. (all CNS related), GAT-2, Gabra6, Gabbrl, Gabbr2 (GABA, neurotransmitter transporters and receptors), SLC2A1 (glucose transporter), NCX3 (Na-Ca exchanger), Gnal (Olfactory related), skn-la were showed up in our network as the \u27hub\u27 genes while some of the known transcription factors Msx3, Cacngl, Brs3, NGF1 etc. were also matched with our network model. Aromatase in the fish experiment was a highly connected gene in a sub-network along with other genes involved in steroidogenesis. Many of the sub-networks were involved in fatty acid metabolism, gamma-hexachlorocyclohexane degradation, and phospholipase activating pathways. Aromatase was a highly connected gene in a sub-network along with the genes LDLR, StAR, KRT18, HER1, CEBPB, ESR2A, and ACVRL1. Many of the subnetworks were involved in fatty acid metabolism, gamma-hexachlorocyclohexane degradation, and phospholipase activating pathways. A credible transcriptional network was recovered from both the time series data and the static data. The network included transcription factors and genes with roles in brain function, neurotransmission and sex hormone synthesis. Examination of the dynamic changes in expression within this network over time provided insight into recovery from traumas and chemical exposures

    Statistical inference from large-scale genomic data

    Get PDF
    This thesis explores the potential of statistical inference methodologies in their applications in functional genomics. In essence, it summarises algorithmic findings in this field, providing step-by-step analytical methodologies for deciphering biological knowledge from large-scale genomic data, mainly microarray gene expression time series. This thesis covers a range of topics in the investigation of complex multivariate genomic data. One focus involves using clustering as a method of inference and another is cluster validation to extract meaningful biological information from the data. Information gained from the application of these various techniques can then be used conjointly in the elucidation of gene regulatory networks, the ultimate goal of this type of analysis. First, a new tight clustering method for gene expression data is proposed to obtain tighter and potentially more informative gene clusters. Next, to fully utilise biological knowledge in clustering validation, a validity index is defined based on one of the most important ontologies within the Bioinformatics community, Gene Ontology. The method bridges a gap in current literature, in the sense that it takes into account not only the variations of Gene Ontology categories in biological specificities and their significance to the gene clusters, but also the complex structure of the Gene Ontology. Finally, Bayesian probability is applied to making inference from heterogeneous genomic data, integrated with previous efforts in this thesis, for the aim of large-scale gene network inference. The proposed system comes with a stochastic process to achieve robustness to noise, yet remains efficient enough for large-scale analysis. Ultimately, the solutions presented in this thesis serve as building blocks of an intelligent system for interpreting large-scale genomic data and understanding the functional organisation of the genome

    Statistical inference from large-scale genomic data

    Get PDF
    This thesis explores the potential of statistical inference methodologies in their applications in functional genomics. In essence, it summarises algorithmic findings in this field, providing step-by-step analytical methodologies for deciphering biological knowledge from large-scale genomic data, mainly microarray gene expression time series. This thesis covers a range of topics in the investigation of complex multivariate genomic data. One focus involves using clustering as a method of inference and another is cluster validation to extract meaningful biological information from the data. Information gained from the application of these various techniques can then be used conjointly in the elucidation of gene regulatory networks, the ultimate goal of this type of analysis. First, a new tight clustering method for gene expression data is proposed to obtain tighter and potentially more informative gene clusters. Next, to fully utilise biological knowledge in clustering validation, a validity index is defined based on one of the most important ontologies within the Bioinformatics community, Gene Ontology. The method bridges a gap in current literature, in the sense that it takes into account not only the variations of Gene Ontology categories in biological specificities and their significance to the gene clusters, but also the complex structure of the Gene Ontology. Finally, Bayesian probability is applied to making inference from heterogeneous genomic data, integrated with previous efforts in this thesis, for the aim of large-scale gene network inference. The proposed system comes with a stochastic process to achieve robustness to noise, yet remains efficient enough for large-scale analysis. Ultimately, the solutions presented in this thesis serve as building blocks of an intelligent system for interpreting large-scale genomic data and understanding the functional organisation of the genome.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Statistical relational learning with nonparametric Bayesian models

    Get PDF
    Statistical relational learning analyzes the probabilistic constraints between the entities, their attributes and relationships. It represents an area of growing interest in modern data mining. Many leading researches are proposed with promising results. However, there is no easily applicable recipe of how to turn a relational domain (e.g. a database) into a probabilistic model. There are mainly two reasons. First, structural learning in relational models is even more complex than structural learning in (non-relational) Bayesian networks due to the exponentially many attributes an attribute might depend on. Second, it might be difficult and expensive to obtain reliable prior knowledge for the domains of interest. To remove these constraints, this thesis applies nonparametric Bayesian analysis to relational learning and proposes two compelling models: Dirichlet enhanced relational learning and infinite hidden relational learning. Dirichlet enhanced relational learning (DERL) extends nonparametric hierarchical Bayesian modeling to relational data. In existing relational models, the model parameters are global, which means the conditional probability distributions are the same for each entity and the relationships are independent of each other. To solve the limitations, we introduce hierarchical Bayesian (HB) framework to relational learning, such that model parameters can be personalized, i.e. owned by entities or relationships, and are coupled via common prior distributions. Additional flexibility is introduced in a nonparametric HB modeling, such that the learned knowledge can be truthfully represented. For inference, we develop an efficient variational method, which is motivated by the Polya urn representation of DP. DERL is demonstrated in a medical domain where we form a nonparametric HB model for entities involving hospitals, patients, procedures and diagnoses. The experiments show that the additional flexibility introduced by the nonparametric HB modeling results in a more accurate model to represent the dependencies between different types of relationships and gives significantly improved prediction performance about unknown relationships. In infinite hidden relational model (IHRM), we apply nonparametric mixture modeling to relational data, which extends the expressiveness of a relational model by introducing for each entity an infinite-dimensional hidden variable as part of a Dirichlet process (DP) mixture model. There are mainly three advantages. First, this reduces the extensive structural learning, which is particularly difficult in relational models due to the huge number of potential probabilistic parents. Second, the information can globally propagate in the ground network defined by the relational structure. Third, the number of mixture components for each entity class can be optimized by the model itself based on the data. IHRM can be applied for entity clustering and relationship/attribute prediction, which are two important tasks in relational data mining. For inference of IHRM, we develop four algorithms: collapsed Gibbs sampling with the Chinese restaurant process, blocked Gibbs sampling with the truncated stick breaking construction (SBC), and mean-field inference with truncated SBC, as well as an empirical approximation. IHRM is evaluated in three different domains: a recommendation system based on the MovieLens data set, prediction of the functions of yeast genes/proteins on the data set of KDD Cup 2001, and the medical data analysis. The experimental results show that IHRM gives significantly improved estimates of attributes/relationships and highly interpretable entity clusters in complex relational data

    Multi-Label Dimensionality Reduction

    Get PDF
    abstract: Multi-label learning, which deals with data associated with multiple labels simultaneously, is ubiquitous in real-world applications. To overcome the curse of dimensionality in multi-label learning, in this thesis I study multi-label dimensionality reduction, which extracts a small number of features by removing the irrelevant, redundant, and noisy information while considering the correlation among different labels in multi-label learning. Specifically, I propose Hypergraph Spectral Learning (HSL) to perform dimensionality reduction for multi-label data by exploiting correlations among different labels using a hypergraph. The regularization effect on the classical dimensionality reduction algorithm known as Canonical Correlation Analysis (CCA) is elucidated in this thesis. The relationship between CCA and Orthonormalized Partial Least Squares (OPLS) is also investigated. To perform dimensionality reduction efficiently for large-scale problems, two efficient implementations are proposed for a class of dimensionality reduction algorithms, including canonical correlation analysis, orthonormalized partial least squares, linear discriminant analysis, and hypergraph spectral learning. The first approach is a direct least squares approach which allows the use of different regularization penalties, but is applicable under a certain assumption; the second one is a two-stage approach which can be applied in the regularization setting without any assumption. Furthermore, an online implementation for the same class of dimensionality reduction algorithms is proposed when the data comes sequentially. A Matlab toolbox for multi-label dimensionality reduction has been developed and released. The proposed algorithms have been applied successfully in the Drosophila gene expression pattern image annotation. The experimental results on some benchmark data sets in multi-label learning also demonstrate the effectiveness and efficiency of the proposed algorithms.Dissertation/ThesisPh.D. Computer Science 201

    Bioinformatics

    Get PDF
    This book is divided into different research areas relevant in Bioinformatics such as biological networks, next generation sequencing, high performance computing, molecular modeling, structural bioinformatics, molecular modeling and intelligent data analysis. Each book section introduces the basic concepts and then explains its application to problems of great relevance, so both novice and expert readers can benefit from the information and research works presented here
    corecore