1,227 research outputs found

    A Dynamic, Modular Intelligent-Agent framework for Astronomical Light Curve Analysis and Classification

    Get PDF
    Modern time-domain astronomy is capable of collecting a staggeringly large amount of data on millions of objects in real time. This makes it almost impossible for objects to be identified manually. Therefore the production of methods and systems for the automated classification of time-domain astro-nomical objects is of great importance. The Liverpool Telescope has a number of wide-field image gathering instruments mounted upon its structure. These in-struments have been in operation since March 2009 gathering data of multi-degree sized areas of sky around the current field of view of the main telescope. Utilizing a Structured Query Language database established by a pre-processing operation upon the resultant images, which has identified millions of candidate variable stars with multiple time-varying magnitude observations, we applied a method designed to extract time-translation invariant features from the time-series light curves of each object for future input into a classification system. These efforts were met with limited success due to noise and uneven sampling within the time-series data. Additionally, finely surveying these light curves is a processing intensive task. Fortunately, these algorithms are capable of multi-threaded implementations based on available resources. Therefore we propose a new system designed to utilize multiple intelligent agents that distribute the data analysis across multiple machines whilst simultaneously a powerful intelligence service operates to constrain the light curves and eliminate false signals due to noise and local alias periods. This system will be highly scalable, capable of operating on a wide range of hardware whilst maintaining the production of ac-curate features based on the fitting of harmonic models to the light curves within the initial Structural Query Language database

    The Classification of Periodic Light Curves from non-survey optimized observational data through Automated Extraction of Phase-based Visual Features

    Get PDF
    We implement two hidden-layer feedforward networks to classify 3011 variable star light curves. These light curves are generated from a reduction of non-survey optimized observational images gathered by wide-field cameras mounted on the Liverpool Telescope. We extract 16 features found to be highly informative in previous studies but achieve only 19.82% accuracy on a 30% test set, 5.56% above a random model. Noise and sampling defects present in these light curves poison these features primarily by reducing our Periodogram period match rate to fewer than 5%. We propose using an automated visual feature extraction technique by transforming the phase-folded light curves into image based representations. This eliminates much of the noise and the missing phase data, due to sampling defects, should have a less destructive effect on these shape features as they still remain at least partially present. We produced a set of scaled images with pixels turned either on or off based on a threshold of data points in each pixel defined as at minimum one fifth of those of the most populated pixel for each light curve. Training on the same feedforward network, we achieve 29.13% accuracy, a 13.16% improvement over a random model and we also show this technique scales with an improvement to 33.51% accuracy by increasing the number of hidden layer neurons. We concede that this improvement is not yet sufficient to allow these light curves to be used for automated classification and in conclusion we discuss a new pipeline currently being developed that simultaneously incorporates period estimation and classification. This method is inspired by approximating the manual methods employed by astronomers

    Advanced photonic and electronic systems - WILGA 2017

    Get PDF
    WILGA annual symposium on advanced photonic and electronic systems has been organized by young scientist for young scientists since two decades. It traditionally gathers more than 350 young researchers and their tutors. Ph.D students and graduates present their recent achievements during well attended oral sessions. Wilga is a very good digest of Ph.D. works carried out at technical universities in electronics and photonics, as well as information sciences throughout Poland and some neighboring countries. Publishing patronage over Wilga keep Elektronika technical journal by SEP, IJET by PAN and Proceedings of SPIE. The latter world editorial series publishes annually more than 200 papers from Wilga. Wilga 2017 was the XL edition of this meeting. The following topical tracks were distinguished: photonics, electronics, information technologies and system research. The article is a digest of some chosen works presented during Wilga 2017 symposium. WILGA 2017 works were published in Proc. SPIE vol.10445

    Classifying Periodic Astrophysical Phenomena from non-survey optimized variable-cadence observational data

    Get PDF
    Modern time-domain astronomy is capable of collecting a staggeringly large amount of data on millions of objects in real time. Therefore, the production of methods and systems for the automated classification of time-domain astronomical objects is of great importance. The Liverpool Telescope has a number of wide-field image gathering instruments mounted upon its structure, the Small Telescopes Installed at the Liverpool Telescope. These instruments have been in operation since March 2009 gathering data of large areas of sky around the current field of view of the main telescope generating a large dataset containing millions of light sources. The instruments are inexpensive to run as they do not require a separate telescope to operate but this style of surveying the sky introduces structured artifacts into our data due to the variable cadence at which sky fields are resampled. These artifacts can make light sources appear variable and must be addressed in any processing method. The data from large sky surveys can lead to the discovery of interesting new variable objects. Efficient software and analysis tools are required to rapidly determine which potentially variable objects are worthy of further telescope time. Machine learning offers a solution to the quick detection of variability by characterising the detected signals relative to previously seen exemplars. In this paper, we introduce a processing system designed for use with the Liverpool Telescope identifying potentially interesting objects through the application of a novel representation learning approach to data collected automatically from the wide-field instruments. Our method automatically produces a set of classification features by applying Principal Component Analysis on set of variable light curves using a piecewise polynomial fitted via a genetic algorithm applied to the epoch-folded data. The epoch-folding requires the selection of a candidate period for variable light curves identified using a genetic algorithm period estimation method specifically developed for this dataset. A Random Forest classifier is then used to classify the learned features to determine if a light curve is generated by an object of interest. This system allows for the telescope to automatically identify new targets through passive observations which do not affect day-to-day operations as the unique artifacts resulting from such a survey method are incorporated into the methods. We demonstrate the power of this feature extraction method compared to feature engineering performed by previous studies by training classification models on 859 light curves of 12 known variable star classes from our dataset. We show that our new features produce a model with a superior mean cross-validation F1 score of 0.4729 with a standard deviation of 0.0931 compared with the engineered features at 0.3902 with a standard deviation of 0.0619. We show that the features extracted from the representation learning are given relatively high importance in the final classification model. Additionally, we compare engineered features computed on the interpolated polynomial fits and show that they produce more reliable distributions than those fit to the raw light curve when the period estimation is correct

    Hierarchically Organized Latent Modules for Exploratory Search in Morphogenetic Systems

    Get PDF
    Self-organization of complex morphological patterns from local interactions is a fascinating phenomenon in many natural and artificial systems. In the artificial world, typical examples of such morphogenetic systems are cellular automata. Yet, their mechanisms are often very hard to grasp and so far scientific discoveries of novel patterns have primarily been relying on manual tuning and ad hoc exploratory search. The problem of automated diversity-driven discovery in these systems was recently introduced [26, 62], highlighting that two key ingredients are autonomous exploration and unsupervised representation learning to describe "relevant" degrees of variations in the patterns. In this paper, we motivate the need for what we call Meta-diversity search, arguing that there is not a unique ground truth interesting diversity as it strongly depends on the final observer and its motives. Using a continuous game-of-life system for experiments, we provide empirical evidences that relying on monolithic architectures for the behavioral embedding design tends to bias the final discoveries (both for hand-defined and unsupervisedly-learned features) which are unlikely to be aligned with the interest of a final end-user. To address these issues, we introduce a novel dynamic and modular architecture that enables unsupervised learning of a hierarchy of diverse representations. Combined with intrinsically motivated goal exploration algorithms, we show that this system forms a discovery assistant that can efficiently adapt its diversity search towards preferences of a user using only a very small amount of user feedback

    Hydrodynamics-Biology Coupling for Algae Culture and Biofuel Production

    Get PDF
    International audienceBiofuel production from microalgae represents an acute optimization problem for industry. There is a wide range of parameters that must be taken into account in the development of this technology. Here, mathematical modelling has a vital role to play. The potential of microalgae as a source of biofuel and as a technological solution for CO2 fixation is the subject of intense academic and industrial research. Large-scale production of microalgae has potential for biofuel applications owing to the high productivity that can be attained in high-rate raceway ponds. We show, through 3D numerical simulations, that our approach is capable of discriminating between situations where the paddle wheel is rapidly moving water or slowly agitating the process. Moreover, the simulated velocity fields can provide lagrangian trajectories of the algae. The resulting light pattern to which each cell is submitted when travelling from light (surface) to dark (bottom) can then be derived. It will then be reproduced in lab experiments to study photosynthesis under realistic light patterns

    Тhe benefits of an additional practice in descriptive geometry course: non obligatory workshop at the Faculty of civil engineering in Belgrade

    Get PDF
    At the Faculty of Civil Engineering in Belgrade, in the Descriptive geometry (DG) course, non-obligatory workshops named “facultative task” are held for the three generations of freshman students with the aim to give students the opportunity to get higher final grade on the exam. The content of this workshop was a creative task, performed by a group of three students, offering free choice of a topic, i.e. the geometric structure associated with some real or imagery architectural/art-work object. After the workshops a questionnaire (composed by the professors at the course) is given to the students, in order to get their response on teaching/learning materials for the DG course and the workshop. During the workshop students performed one of the common tests for testing spatial abilities, named “paper folding". Based on the results of the questionnairethe investigation of the linkages between:students’ final achievements and spatial abilities, as well as students’ expectations of their performance on the exam, and how the students’ capacity to correctly estimate their grades were associated with expected and final grades, is provided. The goal was to give an evidence that a creative work, performed by a small group of students and self-assessment of their performances are a good way of helping students to maintain motivation and to accomplish their achievement. The final conclusion is addressed to the benefits of additional workshops employment in the course, which confirmhigherfinal scores-grades, achievement of creative results (facultative tasks) and confirmation of DG knowledge adaption

    The contemporary visualization and modelling technologies and techniques for the design of the green roofs

    Get PDF
    The contemporary design solutions are merging the boundaries between real and virtual world. The Landscape architecture like the other interdisciplinary field stepped in a contemporary technologies area focused on that, beside the good execution of works, designer solutions has to be more realistic and “touchable”. The opportunities provided by Virtual Reality are certainly not negligible, it is common knowledge that the designs in the world are already presented in this way so the Virtual Reality increasingly used. Following the example of the application of virtual reality in landscape architecture, this paper deals with proposals for the use of virtual reality in landscape architecture so that designers, clients and users would have a virtual sense of scope e.g. rooftop garden, urban areas, parks, roads, etc. It is a programming language that creates a series of images creating a whole, so certain parts can be controlled or even modified in VR. Virtual reality today requires a specific gadget, such as Occulus, HTC Vive, Samsung Gear VR and similar. The aim of this paper is to acquire new theoretical and practical knowledge in the interdisciplinary field of virtual reality, the ability to display using virtual reality methods, and to present through a brief overview the plant species used in the design and construction of an intensive roof garden in a Mediterranean climate, the basic characteristics of roofing gardens as well as the benefits they carry. Virtual and augmented reality as technology is a very powerful tool for landscape architects, when modeling roof gardens, parks, and urban areas. One of the most popular technologies used by landscape architects is Google Tilt Brush, which enables fast modeling. The Google Tilt Brush VR app allows modeling in three-dimensional virtual space using a palette to work with the use of a three-dimensional brush. The terms of two "programmed" realities - virtual reality and augmented reality - are often confused. One thing they have in common, though, is VRML - Virtual Reality Modeling Language. In this paper are shown the ways on which this issue can be solved and by the way, get closer the term of Virtual Reality (VR), also all the opportunities which the Virtual reality offered us. As well, in this paper are shown the conditions of Mediterranean climate, the conceptual solution and the plant species which will be used by execution of intensive green roof on the motel “Marković”
    • …
    corecore