255 research outputs found

    Affine Invariant Contour Descriptors Using Independent Component Analysis and Dyadic Wavelet Transform

    Get PDF
    The paper presents a novel technique for affine invariant feature extraction with the view of object recognition based on parameterized contour. The proposed technique first normalizes an input image by removing the affine deformations using independent component analysis which also reduces the noise introduced during contour parameterization. Then four invariant functionals are constructed using the restored object contour, dyadic wavelet transform and conics in the context of wavelets. Experimental results are conducted using three different standard datasets to confirm the validity of the proposed technique. Beside this the error rates obtained in terms of invariant stability are significantly lower when compared to other wavelet based invariants. Also the proposed invariants exhibit higher feature disparity than the method of Fourier descriptors

    A wavelet based method for affine invariant 2D object recognition

    Get PDF
    Recognizing objects that have undergone certain viewing transformations is an important problem in the field of computer vision. Most current research has focused almost exclusively on single aspects of the problem, concentrating on a few geometric transformations and distortions. Probably, the most important one is the affine transformation which may be considered as an approximation to perspective transformation. Many algorithms were developed for this purpose. Most popular ones are Fourier descriptors and moment based methods. Another powerful tool to recognize affine transformed objects, is the invariants of implicit polynomials. These three methods are usually called as traditional methods. Wavelet-based affine invariant functions are recent contributions to the solution of the problem. This method is better at recognition and more robust to noise compared to other methods. These functions mostly rely on the object contour and undecimated wavelet transform. In this thesis, a technique is developed to recognize objects undergoing a general affine transformation. Affine invariant functions are used, based on on image projections and high-pass filtered images of objects at projection angles . Decimated Wavelet Transform is used instead of undecimated Wavelet Transform. We compared our method with the an another wavelet based affine invariant function, Khalil-Bayoumi and also with traditional methods

    Computationally efficient wavelet affine invariant functions for 2D object recognition

    Get PDF
    In this paper, an affine invariant function is presented for object recognition from wavelet coefficients of the object boundary. In previous works, undecimated wavelet transform was used for affine invariant functions. In this paper, an algorithm based on decimated wavelet transform is developed to compute the affine invariant function. As a result, computational complexity is significantly reduced without decreasing recognition performance. Experimental results are presented

    Shape-based invariant features extraction for object recognition

    No full text
    International audienceThe emergence of new technologies enables generating large quantity of digital information including images; this leads to an increasing number of generated digital images. Therefore it appears a necessity for automatic systems for image retrieval. These systems consist of techniques used for query specification and re-trieval of images from an image collection. The most frequent and the most com-mon means for image retrieval is the indexing using textual keywords. But for some special application domains and face to the huge quantity of images, key-words are no more sufficient or unpractical. Moreover, images are rich in content; so in order to overcome these mentioned difficulties, some approaches are pro-posed based on visual features derived directly from the content of the image: these are the content-based image retrieval (CBIR) approaches. They allow users to search the desired image by specifying image queries: a query can be an exam-ple, a sketch or visual features (e.g., colour, texture and shape). Once the features have been defined and extracted, the retrieval becomes a task of measuring simi-larity between image features. An important property of these features is to be in-variant under various deformations that the observed image could undergo. In this chapter, we will present a number of existing methods for CBIR applica-tions. We will also describe some measures that are usually used for similarity measurement. At the end, and as an application example, we present a specific ap-proach, that we are developing, to illustrate the topic by providing experimental results

    Comparative Analysis of Techniques Used to Detect Copy-Move Tampering for Real-World Electronic Images

    Get PDF
    Evolution of high computational powerful computers, easy availability of several innovative editing software package and high-definition quality-based image capturing tools follows to effortless result in producing image forgery. Though, threats for security and misinterpretation of digital images and scenes have been observed to be happened since a long period and also a lot of research has been established in developing diverse techniques to authenticate the digital images. On the contrary, the research in this region is not limited to checking the validity of digital photos but also to exploring the specific signs of distortion or forgery. This analysis would not require additional prior information of intrinsic content of corresponding digital image or prior embedding of watermarks. In this paper, recent growth in the area of digital image tampering identification have been discussed along with benchmarking study has been shown with qualitative and quantitative results. With variety of methodologies and concepts, different applications of forgery detection have been discussed with corresponding outcomes especially using machine and deep learning methods in order to develop efficient automated forgery detection system. The future applications and development of advanced soft-computing based techniques in digital image forgery tampering has been discussed

    Comparative Analysis of Techniques Used to Detect Copy-Move Tampering for Real-World Electronic Images

    Get PDF
    Evolution of high computational powerful computers, easy availability of several innovative editing software package and high-definition quality-based image capturing tools follows to effortless result in producing image forgery. Though, threats for security and misinterpretation of digital images and scenes have been observed to be happened since a long period and also a lot of research has been established in developing diverse techniques to authenticate the digital images. On the contrary, the research in this region is not limited to checking the validity of digital photos but also to exploring the specific signs of distortion or forgery. This analysis would not require additional prior information of intrinsic content of corresponding digital image or prior embedding of watermarks. In this paper, recent growth in the area of digital image tampering identification have been discussed along with benchmarking study has been shown with qualitative and quantitative results. With variety of methodologies and concepts, different applications of forgery detection have been discussed with corresponding outcomes especially using machine and deep learning methods in order to develop efficient automated forgery detection system. The future applications and development of advanced soft-computing based techniques in digital image forgery tampering has been discussed

    Summation invariant and its application to shape recognition

    Get PDF
    ABSTRACT A novel summation invariant of curves under transformation group action is proposed. This new invariant is less sensitive to noise than the differential invariant and does not require an analytical expression for the curve as the integral invariant does. We exploit this summation invariant to define a shape descriptor called a semi-local summation invariant and use it as a new feature for shape recognition. Tested on a database of noisy shapes of fishes, it was observed that the summation invariant feature exhibited superior discriminating power than that of wavelet-based invariant features
    corecore