631 research outputs found

    Enabling Hardware Green Internet of Things: A review of Substantial Issues

    Get PDF
    Between now and the near future, the Internet of Things (IoT) will redesign the socio-ecological morphology of the human terrain. The IoT ecosystem deploys diverse sensor platforms connecting millions of heterogeneous objects through the Internet. Irrespective of sensor functionality, most sensors are low energy consumption devices and are designed to transmit sporadically or continuously. However, when we consider the millions of connected sensors powering various user applications, their energy efficiency (EE) becomes a critical issue. Therefore, the importance of EE in IoT technology, as well as the development of EE solutions for sustainable IoT technology, cannot be overemphasised. Propelled by this need, EE proposals are expected to address the EE issues in the IoT context. Consequently, many developments continue to emerge, and the need to highlight them to provide clear insights to researchers on eco-sustainable and green IoT technologies becomes a crucial task. To pursue a clear vision of green IoT, this study aims to present the current state-of-the art insights into energy saving practices and strategies on green IoT. The major contribution of this study includes reviews and discussions of substantial issues in the enabling of hardware green IoT, such as green machine to machine, green wireless sensor networks, green radio frequency identification, green microcontroller units, integrated circuits and processors. This review will contribute significantly towards the future implementation of green and eco-sustainable IoT

    Joint Machine-Type Device Selection and Power Allocation for Buffer-Aided Cognitive M2M Communication

    Get PDF
    In this paper, a cognitive machine-to-machine (M2M) communication network is considered, in which a cellular network shares the spectrum with the M2M communication network with M machine-type devices (MTDs), one half-duplex relay, and one MTD gateway for data gathering. One key challenge is that in the future 5G wireless networks, there will be billions of those small MTDs, and therefore, a MTD selection protocol is required for managing data transmission between MTDs. A joint buffer-aided MTD selection and power allocation protocol is proposed to maximize the MTDs’ sum-rate provided that the induced interference to the cellular network is limited. In particular, in the proposed scheme, at each time slot and each subcarrier, the cognitive M2M network optimally decides on whether to be silent or to select either the relay or one of the MTDs for data transmission. To this end, for each MTD, there exists a buffer at the relay to avoid data loss. The closed-form expressions for the power coefficients of MTDs are calculated. Simulation results show that the proposed policy improves the sum-rate of the CM2M network in comparison with the other proposed schemes for M2M communication without buffe

    D13.2 Techniques and performance analysis on energy- and bandwidth-efficient communications and networking

    Get PDF
    Deliverable D13.2 del projecte europeu NEWCOM#The report presents the status of the research work of the various Joint Research Activities (JRA) in WP1.3 and the results that were developed up to the second year of the project. For each activity there is a description, an illustration of the adherence to and relevance with the identified fundamental open issues, a short presentation of the main results, and a roadmap for the future joint research. In the Annex, for each JRA, the main technical details on specific scientific activities are described in detail.Peer ReviewedPostprint (published version

    Greening and Optimizing Energy Consumption of Sensor Nodes in the Internet of Things through Energy Harvesting: Challenges and Approaches

    Get PDF
    This paper presents a survey of current energy efficient technologies that could drive the IoT revolution while examining critical areas for energy improvements in IoT sensor nodes. The paper reviews improvements in emerging energy techniques which promise to revolutionize the IoT landscape. Moreover, the current work also studies the sources of energy consumption by the IoT sensor nodes in a network and the metrics adopted by various researchers in optimizing the energy consumption of these nodes. Increasingly, researchers are exploring better ways of sourcing sufficient energy along with optimizing the energy consumption of IoT sensor nodes and making these energy sources green. Energy harvesting is the basis of this new energy source. The harvested energy could serve both as the principal and alternative energy source of power and thus increase the energy constancy of the IoT systems by providing a green, sufficient and optimal power source among IoT devices. Communication of IoT nodes in a heterogeneous IoT network consumes a lot of energy and the energy level in the nodes depletes with time. There is the need to optimize the energy consumption of such nodes and the current study discusses this as well

    A survey of 5G technologies: regulatory, standardization and industrial perspectives

    Get PDF
    In recent years, there have been significant developments in the research on 5th Generation (5G) networks. Several enabling technologies are being explored for the 5G mobile system era. The aim is to evolve a cellular network that is intrinsically flexible and remarkably pushes forward the limits of legacy mobile systems across all dimensions of performance metrics. All the stakeholders, such as regulatory bodies, standardization authorities, industrial fora, mobile operators and vendors, must work in unison to bring 5G to fruition. In this paper, we aggregate the 5G-related information coming from the various stakeholders, in order to i) have a comprehensive overview of 5G and ii) to provide a survey of the envisioned 5G technologies; their development thus far from the perspective of those stakeholders will open up new frontiers of services and applications for next-generation wireless networks. Keywords: 5G, ITU, Next-generation wireless network

    Millimetre wave frequency band as a candidate spectrum for 5G network architecture : a survey

    Get PDF
    In order to meet the huge growth in global mobile data traffic in 2020 and beyond, the development of the 5th Generation (5G) system is required as the current 4G system is expected to fall short of the provision needed for such growth. 5G is anticipated to use a higher carrier frequency in the millimetre wave (mm-wave) band, within the 20 to 90 GHz, due to the availability of a vast amount of unexploited bandwidth. It is a revolutionary step to use these bands because of their different propagation characteristics, severe atmospheric attenuation, and hardware constraints. In this paper, we carry out a survey of 5G research contributions and proposed design architectures based on mm-wave communications. We present and discuss the use of mm-wave as indoor and outdoor mobile access, as a wireless backhaul solution, and as a key enabler for higher order sectorisation. Wireless standards such as IEE802.11ad, which are operating in mm-wave band have been presented. These standards have been designed for short range, ultra high data throughput systems in the 60 GHz band. Furthermore, this survey provides new insights regarding relevant and open issues in adopting mm-wave for 5G networks. This includes increased handoff rate and interference in Ultra-Dense Network (UDN), waveform consideration with higher spectral efficiency, and supporting spatial multiplexing in mm-wave line of sight. This survey also introduces a distributed base station architecture in mm-wave as an approach to address increased handoff rate in UDN, and to provide an alternative way for network densification in a time and cost effective manner
    corecore