2,238 research outputs found

    A Dual-Band Antenna for RF Energy Harvesting Systems in Wireless Sensor Networks

    Get PDF
    In this paper, we focus on ambient radio frequency energy available from commercial broadcasting stations in order to provide a system based on RF energy harvesting using a new design of receiving antenna. Several antenna designs have been proposed for use in RF energy harvesting systems, as a pertinent receiving antenna design is highly required since the antenna features can affect the amount of energy harvested. The proposed antenna is aimed at greatly increasing the energy harvesting efficiency over Wi-Fi bands: 2.45GHz and 5GHz. This provides a promising alternative energy source in order to power sensors located in harsh environments or remote places, where other energy sources are impracticable.The dual-band antenna can be easily integrated with RF energy harvesting system on the same circuit board. Simulations and measurements were carried out to evaluate the antenna performances and investigate the effects of different design parameters on the antenna performance.The receiving antenna meets the required bandwidth specification and provides peak gain of more than 4 dBi across the operating band.This work was supported in part by EMMAG Program 2014. The tests have been performed under the collaboration with the Electromagnetic Radiation Laboratory (GRE Lab) of the UPV.Bakkali, A.; Pelegrí Sebastiá, J.; Sogorb Devesa, TC.; Llario Sanjuan, JV.; Bou Escrivà, A. (2016). A Dual-Band Antenna for RF Energy Harvesting Systems in Wireless Sensor Networks. Journal of Sensors. 2016:1-8. doi:10.1155/2016/5725836S182016Sudevalayam, S., & Kulkarni, P. (2011). Energy Harvesting Sensor Nodes: Survey and Implications. IEEE Communications Surveys & Tutorials, 13(3), 443-461. doi:10.1109/surv.2011.060710.00094Bottner, H., Nurnus, J., Gavrikov, A., Kuhner, G., Jagle, M., Kunzel, C., … Schlereth, K.-H. (2004). New thermoelectric components using microsystem technologies. Journal of Microelectromechanical Systems, 13(3), 414-420. doi:10.1109/jmems.2004.828740Hande, A., Polk, T., Walker, W., & Bhatia, D. (2007). Indoor solar energy harvesting for sensor network router nodes. Microprocessors and Microsystems, 31(6), 420-432. doi:10.1016/j.micpro.2007.02.006Alippi, C., & Galperti, C. (2008). An Adaptive System for Optimal Solar Energy Harvesting in Wireless Sensor Network Nodes. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(6), 1742-1750. doi:10.1109/tcsi.2008.922023Mikeka, C., & Arai, H. (2011). Design Issues in Radio Frequency Energy Harvesting System. Sustainable Energy Harvesting Technologies - Past, Present and Future. doi:10.5772/25348Nintanavongsa, P., Muncuk, U., Lewis, D. R., & Chowdhury, K. R. (2012). Design Optimization and Implementation for RF Energy Harvesting Circuits. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2(1), 24-33. doi:10.1109/jetcas.2012.2187106Vyas, R. J., Cook, B. B., Kawahara, Y., & Tentzeris, M. M. (2013). E-WEHP: A Batteryless Embedded Sensor-Platform Wirelessly Powered From Ambient Digital-TV Signals. IEEE Transactions on Microwave Theory and Techniques, 61(6), 2491-2505. doi:10.1109/tmtt.2013.2258168Farinholt, K. M., Park, G., & Farrar, C. R. (2009). RF Energy Transmission for a Low-Power Wireless Impedance Sensor Node. IEEE Sensors Journal, 9(7), 793-800. doi:10.1109/jsen.2009.2022536Md. Din, N., Chakrabarty, C. K., Bin Ismail, A., Devi, K. K. A., & Chen, W.-Y. (2012). DESIGN OF RF ENERGY HARVESTING SYSTEM FOR ENERGIZING LOW POWER DEVICES. Progress In Electromagnetics Research, 132, 49-69. doi:10.2528/pier1207200

    Rectenna Systems for RF Energy Harvesting and Wireless Power Transfer

    Get PDF
    With the rapid development of the wireless systems and demands of low-power integrated electronic circuits, various research trends have tended to study the feasibility of powering these circuits by harvesting free energy from ambient electromagnetic space or by using dedicated RF source. Wireless power transmission (WPT) technology was first pursued by Tesla over a century ago. However, it faced several challenges for deployment in real applications. Recently, energy harvesting and WPT technologies have received much attention as a clean and renewable power source. Rectenna (rectifying antenna) system can be used for remotely charging batteries in several sensor networks at internet of things (IoT) applications as commonly used in smart buildings, implanted medical devices and automotive applications. Rectenna, which is used to convert from RF energy to usable DC electrical energy, is mainly a combination between a receiving antenna and a rectifier circuit. This chapter will present several designs for single and multiband rectennas with different characteristics for energy harvesting applications. Single and multiband antennas as well as rectifier circuits with matching networks are introduced for complete successful rectenna circuit models. At the end of the chapter, a dual-band rectenna example is introduced with a detailed description for each section of the rectenna

    Wearable flexible lightweight modular RFID tag with integrated energy harvester

    Get PDF
    A novel wearable radio frequency identification (RFID) tag with sensing, processing, and decision-taking capability is presented for operation in the 2.45-GHz RFID superhigh frequency (SHF) band. The tag is powered by an integrated light harvester, with a flexible battery serving as an energy buffer. The proposed active tag features excellent wearability, very high read range, enhanced functionality, flexible interfacing with diverse low-power sensors, and extended system autonomy through an innovative holistic microwave system design paradigm that takes antenna design into consideration from the very early stages. Specifically, a dedicated textile shorted circular patch antenna with monopolar radiation pattern is designed and optimized for highly efficient and stable operation within the frequency band of operation. In this process, the textile antenna's functionality is augmented by reusing its surface as an integration platform for light-energy-harvesting, sensing, processing, and transceiver hardware, without sacrificing antenna performance or the wearer's comfort. The RFID tag is validated by measuring its stand-alone and on-body characteristics in free-space conditions. Moreover, measurements in a real-world scenario demonstrate an indoor read range up to 23 m in nonline-of-sight indoor propagation conditions, enabling interrogation by a reader situated in another room. In addition, the RFID platform only consumes 168.3 mu W, when sensing and processing are performed every 60 s

    Current Developments of RF Energy Harvesting System for Wireless Sensor Networks

    Get PDF
    Energy harvesting or energy scavenging is basically a conversion process of the ambient energy into the electrical energy. The ambient energy exists around us in many different forms including thermal, chemical, electrical and radio frequency (RF). This technique significantly reduces the costs of replacing batteries periodically. Hence, energy harvesting offers various environmental friendly alternative energy sources, which include the vibration, electromagnetic wave, wind energy and solar power. This study will focus on RF energy harvesting that involves the generating of a small amount of the electrical power to drive circuits in wireless communication electronics devices. Recently, wireless sensor network (WSN) has been a crucial part of our daily life. The importance of WSN can be described by the use of sensors in many devices for home security including light sensors, room thermostat and alarm systems. This paper presents an overview and the progress achieved in RF energy harvesting, which involves the integration of antenna with rectifying circuit. Different combinations of antenna and rectifier topologies yield diverse results. Therefore, this study is expected to give an indication on the appropriate techniques to develop an efficient RF energy harvesting system

    Max-min Fair Wireless Energy Transfer for Secure Multiuser Communication Systems

    Full text link
    This paper considers max-min fairness for wireless energy transfer in a downlink multiuser communication system. Our resource allocation design maximizes the minimum harvested energy among multiple multiple-antenna energy harvesting receivers (potential eavesdroppers) while providing quality of service (QoS) for secure communication to multiple single-antenna information receivers. In particular, the algorithm design is formulated as a non-convex optimization problem which takes into account a minimum required signal-to-interference-plus-noise ratio (SINR) constraint at the information receivers and a constraint on the maximum tolerable channel capacity achieved by the energy harvesting receivers for a given transmit power budget. The proposed problem formulation exploits the dual use of artificial noise generation for facilitating efficient wireless energy transfer and secure communication. A semidefinite programming (SDP) relaxation approach is exploited to obtain a global optimal solution of the considered problem. Simulation results demonstrate the significant performance gain in harvested energy that is achieved by the proposed optimal scheme compared to two simple baseline schemes.Comment: 5 pages, invited paper, IEEE Information Theory Workshop 2014, Hobart, Tasmania, Australia, Nov. 201
    corecore