2,000 research outputs found

    Preliminary study, analysis and design for a power switch for digital engine actuators

    Get PDF
    Innovative control configurations using high temperature switches to operate actuator driving solenoids were studied. The impact on engine control system life cycle costs and reliability of electronic control and (ECU) heat dissipation due to power conditioning and interface drivers were addressed. Various power supply and actuation schemes were investigated, including optical signal transmission and electronics on the actuator, engine driven alternator, and inside the ECU. The use of a switching shunt power conditioner results in the most significant decrease in heat dissipation within the ECU. No overall control system reliability improvement is projected by the use of remote high temperature switches for solenoid drivers

    High-temperature optically activated GaAs power switching for aircraft digital electronic control

    Get PDF
    Gallium arsenide high-temperature devices were fabricated and assembled into an optically activated pulse-width-modulated power control for a torque motor typical of the kinds used in jet engine actuators. A bipolar heterojunction phototransistor with gallium aluminum arsenide emitter/window, a gallium arsenide junction field-effect power transistor and a gallium arsenide transient protection diode were designed and fabricated. A high-temperature fiber optic/phototransistor coupling scheme was implemented. The devices assembled into the demonstrator were successfully tested at 250 C, proving the feasibility of actuator-located switching of control power using optical signals transmitted by fibers. Assessments of the efficiency and technical merits were made for extension of this high-temperature technology to local conversion of optical power to electrical power and its control at levels useful for driving actuators. Optical power sources included in the comparisons were an infrared light-emitting diode, an injection laser diode, tungsten-halogen lamps and arc lamps. Optical-to-electrical power conversion was limited to photovoltaics located at the actuator. Impedance matching of the photovoltaic array to the load was considered over the full temperature range, -55 C to 260 C. Loss of photovoltaic efficiency at higher temperatures was taken into account. Serious losses in efficiency are: (1) in the optical source and the cooling which they may require in the assumed 125 C ambient, (2) in the decreased conversion efficiency of the gallium arsenide photovoltaic at 260 C, and (3) in impedance matching. Practical systems require improvements in these areas

    Integrated electronic gating system for multiplexing applications final report

    Get PDF
    Solid state switch for electronic gating system in spacecraft with multiplexing application

    Analysis, design, fabrication and testing of an optical tip clearance sensor

    Get PDF
    Analyses and the design, fabrication, and testing of an optical tip clearance sensor with intended application in aircraft propulsion control systems are reported. The design of a sensor test rig, evaluation of optical sensor components at elevated temperatures, sensor design principles, sensor test results at room temperature, and estimations of sensor accuracy at temperatures of an aircraft engine environment are discussed. Room temperature testing indicated possible measurement accuracies of less than 12.7 microns (0.5 mils). Ways to improve performance at engine operating temperatures are recommended. The potential of this tip clearance sensor is assessed

    Picosecond semiconductor switching devices

    Get PDF
    Imperial Users onl

    Analysis, design and implementation of front-end reconfigurable antenna systems (FERAS)

    Get PDF
    The increase in demand on reconfigurable systems and especially for wireless communications applications has stressed the need for smart and agile RF devices that sense and respond to the RF changes in the environment. Many different applications require frequency agility with software control ability such as in a cognitive radio environment where antenna systems have to be designed to fulfill the extendable and reconfigurable multi-service and multi-band requirements. Such applications increase spectrum efficiency as well as the power utilization in modern wireless systems. The emphasis of this dissertation revolves around the following question: Is it possible to come up with new techniques to achieve reconfigurable antenna systems with better performance?\u27 Two main branches constitute the outline of this work. The first one is based on the design of reconfigurable antennas by incorporating photoconductive switching elements in order to change the antenna electrical properties. The second branch relies on the change in the physical structure of the antenna via a rotational motion. In this work a new photoconductive switch is designed with a new light delivery technique. This switch is incorporated into new optically pumped reconfigurable antenna systems (OPRAS). The implementation of these antenna systems in applications such as cognitive radio is demonstrated and discussed. A new radio frequency (RF) technique for measuring the semiconductor carrier lifetime using optically reconfigurable transmission lines is proposed. A switching time investigation for the OPRAS is also accomplished to better cater for the cognitive radio requirements. Moreover, different reconfiguration mechanisms are addressed such as physical alteration of antenna parts via a rotational motion. This technique is supported by software to achieve a complete controlled rotatable reconfigurable cognitive radio antenna system. The inter-correlation between neural networks and cellular automata is also addressed for the design of reconfigurable and multi-band antenna systems for various applications.\u2

    Evaluation of 4h-Sic Photoconductive Switches for Pulsed Power Applications Based on Numerical Simulations

    Get PDF
    Since the early studies by Auston, photoconductive semiconductor switches (PCSSs) have been investigated intensively for many applications owing to their unique advantages over conventional gas and mechanical switches. These advantages include high speeds, fast rise times, optical isolation, compact geometry, and negligible jitter. Another important requirement is the ability to operate at high repetition rates with long device lifetimes (i.e., good reliability without degradation). Photoconductive semiconductor switches (PCSSs) are low-jitter compact alternatives to traditional gas switches in pulsed power systems. The physical properties of Silicon Carbide (SiC), such as a large bandgap (3.1-3.35 eV), high avalanche breakdown field (~3 MV/cm), and large thermal conductivity (4-5 W/cm-K) with superior radiation hardness and resistance to chemical attack, make SiC an attractive candidate for high voltage, high temperature, and high power device applications. A model-based analysis of the steady-state, current-voltage response of semi-insulating 4H-SiC was carried out to probe the internal mechanisms, focusing on electric field driven effects. Relevant physical processes, such as multiple defects, repulsive potential barriers to electron trapping, band-to-trap impact ionization, and field-dependent detrapping, were comprehensively included. Results of our model matched the available experimental data fairly well over orders of magnitude variation in the current density. A number of important parameters were also extracted in the process through comparisons with available data. Finally, based on our analysis, the possible presence of holes in the samples could be discounted up to applied fields as high as 275 kV/cm. In addition, calculations of electric field distributions in a SiC photoconductive semiconductor switch structure with metal contacts employing contact extensions on a high-k HfO2 dielectric were carried out, with the goal of assessing reductions in the peak electric fields. For completeness, analysis of thermal heating in a lateral PCSS structure with such modified geometries after photoexcitation was also included. The simulation results of the electric field distribution show that peak electric fields, and hence the potential for device failure, can be mitigated by these strategies. A combination of the two approaches was shown to produce up to a ~67% reduction in peak fields. The reduced values were well below the threshold for breakdown in SiC material using biasing close to experimental reports. The field mitigation was shown to depend on the length of the metal overhang. Further, the calculations show that, upon field mitigation, the internal temperature rise would also be controlled. A maximum value of 980 K was obtained here for an 8 ns electrical pulse at a 20 kV external bias, which is well below the limits for generating local stress or cracks or defects
    corecore