8,456 research outputs found

    Ortalama-varyans portföy optimizasyonunda genetik algoritma uygulamaları üzerine bir literatür araştırması

    Get PDF
    Mean-variance portfolio optimization model, introduced by Markowitz, provides a fundamental answer to the problem of portfolio management. This model seeks an efficient frontier with the best trade-offs between two conflicting objectives of maximizing return and minimizing risk. The problem of determining an efficient frontier is known to be NP-hard. Due to the complexity of the problem, genetic algorithms have been widely employed by a growing number of researchers to solve this problem. In this study, a literature review of genetic algorithms implementations on mean-variance portfolio optimization is examined from the recent published literature. Main specifications of the problems studied and the specifications of suggested genetic algorithms have been summarized

    Algorithm Portfolio for Individual-based Surrogate-Assisted Evolutionary Algorithms

    Full text link
    Surrogate-assisted evolutionary algorithms (SAEAs) are powerful optimisation tools for computationally expensive problems (CEPs). However, a randomly selected algorithm may fail in solving unknown problems due to no free lunch theorems, and it will cause more computational resource if we re-run the algorithm or try other algorithms to get a much solution, which is more serious in CEPs. In this paper, we consider an algorithm portfolio for SAEAs to reduce the risk of choosing an inappropriate algorithm for CEPs. We propose two portfolio frameworks for very expensive problems in which the maximal number of fitness evaluations is only 5 times of the problem's dimension. One framework named Par-IBSAEA runs all algorithm candidates in parallel and a more sophisticated framework named UCB-IBSAEA employs the Upper Confidence Bound (UCB) policy from reinforcement learning to help select the most appropriate algorithm at each iteration. An effective reward definition is proposed for the UCB policy. We consider three state-of-the-art individual-based SAEAs on different problems and compare them to the portfolios built from their instances on several benchmark problems given limited computation budgets. Our experimental studies demonstrate that our proposed portfolio frameworks significantly outperform any single algorithm on the set of benchmark problems

    Soft computing techniques applied to finance

    Get PDF
    Soft computing is progressively gaining presence in the financial world. The number of real and potential applications is very large and, accordingly, so is the presence of applied research papers in the literature. The aim of this paper is both to present relevant application areas, and to serve as an introduction to the subject. This paper provides arguments that justify the growing interest in these techniques among the financial community and introduces domains of application such as stock and currency market prediction, trading, portfolio management, credit scoring or financial distress prediction areas.Publicad

    Scaling up a Project Portfolio Selection Technique by using Multiobjective Genetic Optimization

    Get PDF
    This paper proposes a multiobjective heuristic search approach to support a project portfolio selection technique on scenarios with a large number of candidate projects. The original formulation for the technique requires analyzing all combinations of the candidate projects, which turns to be unfeasible when more than a few alternatives are available. We have used a multiobjective genetic algorithm to partially explore the search space of project combinations and select the most effective ones. We present an experimental study based on four real-world project selection problems that compares the results found by the genetic algorithm to those yielded by a non-systematic search procedure (random search). A second experimental study evaluates the best parameter settings to perform the heuristic search. Experimental results show evidence that the project selection technique can be used in large-scale scenarios and that the genetic algorithm presents better results than simpler search strategies

    Genetic algorithms applied to asset & liability management

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Information Systems and Technologies ManagementEffective asset liability management is at the core of what a life insurance company must do, particularly in what concerns defined benefits pension fund products. The life insurer faces a complex problem whereby multiple and sometimes conflicting objectives must be addressed at the same time, such as achieving higher returns while reducing the portfolio’s exposure to a plethora of risks. To achieve these goals, pension fund managers must then carefully choose asset allocation strategies for their portfolios from an infinite pool of asset combinations and weights. Given the nature of this problem, the use of genetic algorithms seems to be adequate, as this method is particularly well suited to deal with very large and multi-modal solution spaces. The main purpose of this dissertation is to assess how well the genetic algorithm method performs in solving this specific problem, and compare the results with other simpler methods. The results of Genetic Algorithms application were satisfactory and the results of this study suggests that Genetic Algorithms are a useful tool to solve ALM problems

    A deep Q-learning portfolio management framework for the cryptocurrency market

    Get PDF
    AbstractDeep reinforcement learning is gaining popularity in many different fields. An interesting sector is related to the definition of dynamic decision-making systems. A possible example is dynamic portfolio optimization, where an agent has to continuously reallocate an amount of fund into a number of different financial assets with the final goal of maximizing return and minimizing risk. In this work, a novel deep Q-learning portfolio management framework is proposed. The framework is composed by two elements: a set of local agents that learn assets behaviours and a global agent that describes the global reward function. The framework is tested on a crypto portfolio composed by four cryptocurrencies. Based on our results, the deep reinforcement portfolio management framework has proven to be a promising approach for dynamic portfolio optimization

    Early portfolio pruning: a scalable approach to hybrid portfolio selection

    Get PDF
    Driving the decisions of stock market investors is among the most challenging financial research problems. Markowitz’s approach to portfolio selection models stock profitability and risk level through a mean–variance model, which involves estimating a very large number of parameters. In addition to requiring considerable computational effort, this raises serious concerns about the reliability of the model in real-world scenarios. This paper presents a hybrid approach that combines itemset extraction with portfolio selection. We propose to adapt Markowitz’s model logic to deal with sets of candidate portfolios rather than with single stocks. We overcome some of the known issues of the Markovitz model as follows: (i) Complexity: we reduce the model complexity, in terms of parameter estimation, by studying the interactions among stocks within a shortlist of candidate stock portfolios previously selected by an itemset mining algorithm. (ii) Portfolio-level constraints: we not only perform stock-level selection, but also support the enforcement of arbitrary constraints at the portfolio level, including the properties of diversification and the fundamental indicators. (iii) Usability: we simplify the decision-maker’s work by proposing a decision support system that enables flexible use of domain knowledge and human-in-the-loop feedback. The experimental results, achieved on the US stock market, confirm the proposed approach’s flexibility, effectiveness, and scalability
    • …
    corecore