272 research outputs found

    Voltage stacking for near/sub-threshold operation

    Get PDF

    Relaxation, dephasing, and quantum control of electron spins in double quantum dots

    Full text link
    Recent experiments have demonstrated quantum manipulation of two-electron spin states in double quantum dots using electrically controlled exchange interactions. Here, we present a detailed theory for electron spin dynamics in two-electron double dot systems that was used to guide these experiments and analyze experimental results. The theory treats both charge and spin degrees of freedom on an equal basis. Specifically, we analyze the relaxation and dephasing mechanisms that are relevant to experiments and discuss practical approaches for quantum control of two-electron system. We show that both charge and spin dephasing play important roles in the dynamics of the two-spin system, but neither represents a fundamental limit for electrical control of spin degrees of freedom in semiconductor quantum bits.Comment: 18 pages, 10 figures (reduced in length from V1, removed extraneous content, added references

    Exploration and Design of High Performance Variation Tolerant On-Chip Interconnects

    Get PDF
    Siirretty Doriast

    Low Power Digital Filter Implementation in FPGA

    Get PDF
    Digital filters suitable for hearing aid application on low power perspective have been developed and implemented in FPGA in this dissertation. Hearing aids are primarily meant for improving hearing and speech comprehensions. Digital hearing aids score over their analog counterparts. This happens as digital hearing aids provide flexible gain besides facilitating feedback reduction and noise elimination. Recent advances in DSP and Microelectronics have led to the development of superior digital hearing aids. Many researchers have investigated several algorithms suitable for hearing aid application that demands low noise, feedback cancellation, echo cancellation, etc., however the toughest challenge is the implementation. Furthermore, the additional constraints are power and area. The device must consume as minimum power as possible to support extended battery life and should be as small as possible for increased portability. In this thesis we have made an attempt to investigate possible digital filter algorithms those are hardware configurable on low power view point. Suitability of decimation filter for hearing aid application is investigated. In this dissertation decimation filter is implemented using ‘Distributed Arithmetic’ approach.While designing this filter, it is observed that, comb-half band FIR-FIR filter design uses less hardware compared to the comb-FIR-FIR filter design. The power consumption is also less in case of comb-half band FIR-FIR filter design compared to the comb-FIR-FIR filter. This filter is implemented in Virtex-II pro board from Xilinx and the resource estimator from the system generator is used to estimate the resources. However ‘Distributed Arithmetic’ is highly serial in nature and its latency is high; power consumption found is not very low in this type of filter implementation. So we have proceeded for ‘Adaptive Hearing Aid’ using Booth-Wallace tree multiplier. This algorithm is also implemented in FPGA and power calculation of the whole system is done using Xilinx Xpower analyser. It is observed that power consumed by the hearing aid with Booth-Wallace tree multiplier is less than the hearing aid using Booth multiplier (about 25%). So we can conclude that the hearing aid using Booth-Wallace tree multiplier consumes less power comparatively. The above two approached are purely algorithmic approach. Next we proceed to combine circuit level VLSI design and with algorithmic approach for further possible reduction in power. A MAC based FDF-FIR filter (algorithm) that uses dual edge triggered latch (DET) (circuit) is used for hearing aid device. It is observed that DET based MAC FIR filter consumes less power than the traditional (single edge triggered, SET) one (about 41%). The proposed low power latch provides a power saving upto 65% in the FIR filter. This technique consumes less power compared to previous approaches that uses low power technique only at algorithmic abstraction level. The DET based MAC FIR filter is tested for real-time validation and it is observed that it works perfectly for various signals (speech, music, voice with music). The gain of the filter is tested and is found to be 27 dB (maximum) that matches with most of the hearing aid (manufacturer’s) specifications. Hence it can be concluded that FDF FIR digital filter in conjunction with low power latch is a strong candidate for hearing aid application

    Data Conversion Within Energy Constrained Environments

    Get PDF
    Within scientific research, engineering, and consumer electronics, there is a multitude of new discrete sensor-interfaced devices. Maintaining high accuracy in signal quantization while staying within the strict power-budget of these devices is a very challenging problem. Traditional paths to solving this problem include researching more energy-efficient digital topologies as well as digital scaling.;This work offers an alternative path to lower-energy expenditure in the quantization stage --- content-dependent sampling of a signal. Instead of sampling at a constant rate, this work explores techniques which allow sampling based upon features of the signal itself through the use of application-dependent analog processing. This work presents an asynchronous sampling paradigm, based off the use of floating-gate-enabled analog circuitry. The basis of this work is developed through the mathematical models necessary for asynchronous sampling, as well the SPICE-compatible models necessary for simulating floating-gate enabled analog circuitry. These base techniques and circuitry are then extended to systems and applications utilizing novel analog-to-digital converter topologies capable of leveraging the non-constant sampling rates for significant sample and power savings

    Doctor of Philosophy

    Get PDF
    dissertationCommunication surpasses computation as the power and performance bottleneck in forthcoming exascale processors. Scaling has made transistors cheap, but on-chip wires have grown more expensive, both in terms of latency as well as energy. Therefore, the need for low energy, high performance interconnects is highly pronounced, especially for long distance communication. In this work, we examine two aspects of the global signaling problem. The first part of the thesis focuses on a high bandwidth asynchronous signaling protocol for long distance communication. Asynchrony among intellectual property (IP) cores on a chip has become necessary in a System on Chip (SoC) environment. Traditional asynchronous handshaking protocol suffers from loss of throughput due to the added latency of sending the acknowledge signal back to the sender. We demonstrate a method that supports end-to-end communication across links with arbitrarily large latency, without limiting the bandwidth, so long as line variation can be reliably controlled. We also evaluate the energy and latency improvements as a result of the design choices made available by this protocol. The use of transmission lines as a physical interconnect medium shows promise for deep submicron technologies. In our evaluations, we notice a lower energy footprint, as well as vastly reduced wire latency for transmission line interconnects. We approach this problem from two sides. Using field solvers, we investigate the physical design choices to determine the optimal way to implement these lines for a given back-end-of-line (BEOL) stack. We also approach the problem from a system designer's viewpoint, looking at ways to optimize the lines for different performance targets. This work analyzes the advantages and pitfalls of implementing asynchronous channel protocols for communication over long distances. Finally, the innovations resulting from this work are applied to a network-on-chip design example and the resulting power-performance benefits are reported

    The meatgrinder : an efficient current-multiplying inductive energy storage and transfer circuit

    Get PDF
    The meatgrinder is a high-efficiency inductive energy storage and transfer circuit which may be used to supply high-current pulsed power requirements in applications such as electromagnetic propulsion. It overcomes the inherent 25% efficiency limit when transferring energy between uncoupled inductors and simultaneously provides current multiplication. An unloaded six-step demonstration circuit has been used to multiply current from 7A to 76A at an efficiency of 44%, and a single-step demonstration circuit has been used to multiply the current in an uncoupled load induct or from lOA to 30A, the efficiency of energy transfer being 31%. Both circuits use power MOSFETs for switching. These circuits have been used in conjunction with theoretical analysis and computer simulation to study the design and performance of the meatgrinder. Investigations have been carried out in order to confirm the basic theory, to clarify the details of circuit operation, and to provide the information necessary for future feasibility studies

    Homonuclear correlation in solid-state NMR : developing experiments for half-integer quadrupolar nuclei

    Get PDF
    The objective was to develop solid-state nuclear magnetic resonance (NMR) homonuclear correlation experiments for half-integer quadrupolar nuclei so as to study atomic proximities and connectivities in disordered materials. Nearby nuclear spins are coupled through space via their magnetic dipole moments. Dipolar broadening is removed by magic angle spinning (MAS) for isolated spin pairs. However, the noncommutation of the electric quadrupolar interaction with the dipolar interaction means that the latter will not be removed by MAS. This interplay between the dipolar and quadrupolar interactions, combined with the effects of multiple noncommutating homonuclear dipolar couplings, was investigated by observing spin-echo dephasing curves as well as magnetisation transfer in 2D spin diffusion experiments. Polycrystalline lithium diborate samples were synthesised to act as model compounds. The preparation of samples with differing 11B isotopic abundances enabled a comparison of samples with either predominantly isolated spin-pairs or multiple coupled nuclei. Spin diffusion experiments probed 11B–11B correlation at three magnetic field strengths, 80% and 25% 11B isotopic abundances, MAS rates from 4427 Hz to 7602 Hz and under DOR. Enhanced magnetisation transfer was observed for the higher 11B isotopic abundance and at slower spinning speeds. The latter dependence was reproduced by four-spin computer simulations. Secondorder quadrupolar broadened spin diffusion cross-peaks under MAS had a mixed positive and negative appearance for the 80% 11B sample. A similar effect was previously observed for four dipolar-coupled I = 1/2 nuclei. Spin-echo dephasing curves were recorded for 5%, 25% and 100% 11B isotopic abundances and MAS rates of 5 kHz to 20 kHz. Depletion of 11B isotopic abundance prolonged the coherence dephasing time because of a reduction of noncommuting homonuclear dipolar couplings. Faster dephasing was observed for the smaller CQ = 0.51MHz site; four-spin computer simulations showed this is consistent with the reintroduction of the dipolar coupling being most efficient when the MAS rate and first-order quadrupolar interaction are of the same magnitude. Speeding-up the MAS rate prolonged the dephasing time for the CQ = 2.56MHz site but not for the CQ = 0.51MHz site because of an interplay between the quadrupolar and multiple dipolar interactions. Through-bond Jcouplings between 11B nuclei were not detected, setting an upper bound of 2JBB <3 Hz in polycrystalline lithium diborate
    corecore