77 research outputs found

    HIDE: User centred Domotic evolution toward Ambient Intelligence

    Get PDF
    Pervasive Computing and Ambient Intelligence (AmI) visions are still far from being achieved, especially with regard to Domotics and home applications. According to the vision of Ambient Intelligence (AmI), the most advanced technologies are those that disappear: at maturity, computer technology should become invisible. All the objects surrounding us must possess sufficient computing capacity to interact with users, the surroundings and each other. The entire physical environment in which users are immersed should thus be a hidden computer system equipped with the appropriate software in order to exhibit intelligent behavior. Even though many implementations have started to appear in several contexts, few applications have been made available for the home environment and the general public. This is mainly due to the segmentation of standards and proprietary solutions, which are currently confusing the market with a sparse offer of uninteroperable devices and systems. Although modern houses are equipped with smart technological appliances, still very few of these appliances can be seamlessly connected to each other. The objective of this research work is to take steps in these directions by proposing, on the one hand, a software system designed to make today’s heterogeneous, mostly incompatible domotic systems fully interoperable and, on the other hand, a feasible software application able to learn the behavior and habits of home inhabitants in order to actively contribute to anticipating user needs, and preventing emergency situations for his health. By applying machine learning techniques, the system offers a complete, ready-to-use practical application that learns through interaction with the user in order to improve life quality in a technological living environment, such as a house, a smart city and so on. The proposed solution, besides making life more comfortable for users without particular needs, represents an opportunity to provide greater autonomy and safety to disabled and elderly occupants, especially the critically ill ones. The prototype has been developed and is currently running at the Pisa CNR laboratory, where a home environment has been faithfully recreated

    A Semantics-Rich Information Technology Architecture for Smart Buildings

    Get PDF
    The design of smart homes, buildings and environments currently suffers from a low maturity of available methodologies and tools. Technologies, devices and protocols strongly bias the design process towards vertical integration, and more flexible solutions based on separation of design concerns are seldom applied. As a result, the current landscape of smart environments is mostly populated by defectively designed solutions where application requirements (e.g., end-user functionality) are too often mixed and intertwined with technical requirements (e.g., managing the network of devices). A mature and effective design process must, instead, rely on a clear separation between the application layer and the underlying enabling technologies, to enable effective design reuse. The role of smart gateways is to enable this separation of concerns and to provide an abstracted view of available automation technology to higher software layers. This paper presents a blueprint for the information technology (IT) architecture of smart buildings that builds on top of established software engineering practices, such as model-driven development and semantic representation, and that avoids many pitfalls inherent in legacy approaches. The paper will also present a representative use case where the approach has been applied and the corresponding modeling and software tools

    Towards a software infrastructure for district energy management

    Get PDF
    Nowadays ICT is becoming a key factor to enhance the energy optimization in our cities. At district level, real-time information can be accessed to monitor and control the energy distribution network. Moreover, the fine grain monitoring and control done at building level can provide additional information to develop more efficient control policies for energy distribution in the district. In this paper we present a distributed software infrastructure for district energy management, which aims to provide a digital archive of the city in which energetic information is available. Such information is considered as the input for a decision system, which aims to increase the energy efficiency by promoting local balancing and shaving peak loads. As case study, we integrated in our proposed cloud the heating distribution network in Turin and we present exploitable options based on real-world environmental data to increase the energy efficiency and minimize the peak reques

    A diffuse domotic control powered by a networked intelligence

    Get PDF
    We describe a diffuse control system for household appliances rooted in an Internet of Thing network empowered by a cognitive system. The key idea is that these appliances constitute an ecosystem populated by a plenty of devices with common features, yet called to satisfy in an almost repetitive way needs that may be very diversified, depending on the user preferences. This calls for a network putting them in connection and a cognitive system that is capable to interpret the user requests and translate them into instructions to be transmitted to the appliances. This in turn requires a proper architecture and efficient protocols for connecting the appliances to the network, as well as robust algorithms that concretely challenge cognitive and connectionist theories to produce the instructions ruling the appliances. We discuss both aspects from a design perspective and exhibit a mockup where connections and algorithms are implemented

    Event-Driven User-Centric Middleware for Energy Efficient Buildings and Public Spaces

    Get PDF
    In this work, the design of an event-driven user-centric middleware for monitoring and managing energy consumption in public buildings and spaces is presented. The main purpose is to increase the energy efficiency, reducing consumption, in buildings and public spaces. To achieve this, the proposed service-oriented middleware has been designed to be event based, also exploiting the user behaviours patterns of the people who live and work into the building. Furthermore, it allows an easy integration of heterogeneous technologies in order to enable a hardware independent interoperability between them. Moreover, a Heating Ventilation and Air Conditioning (HVAC) control strategy has been developed and the whole infrastructure has been deployed in a real-world case study consisting of a historical building. Finally the results will be presented and discusse

    A Service-oriented Architecture for Ambient-Assisted Living

    Get PDF
    Ambient-Assisted Living (AAL) is currently an important research and development area, mainly due to the rapidly aging society, the increasing cost of health care, and the growing importance that individuals place on living independently. The general goal of AAL solutions is to apply ambient-assisted intelligence to enable people with specific demands (e.g. handicapped or elderly) to live in their preferred environment longer by tools (i.e. smart objects, mobile and wearable sensors, intelligent devices) being sensitive and responsive to the presence of people and their actions. The research describes the design and development of a novel service-oriented system architecture where different smart objects and sensors are combined to offer ambient-assisted living intelligence to older people. The design stage is driven by a user-centred approach to define an interoperable architecture and human-oriented principles to create usable products and well-accepted services. Such architecture has been realized in the context of an Italian research project funded by the Marche Region and promoted by INRCA (National Institute on Health and Science of Aging) in the framework of smart home for active ageing and ambient assisted living. The result is an interoperable and flexible platform that allows creating user-centred services for independent living

    Green Buildings and Ambient Intelligence: case study for N.A.S.A. Sustainability Base and future Smart Infrastructures

    Get PDF
    Con la diffusione delle smart infrastructures, espressione con cui ci si riferisce collettivamente ai concetti di smart cities e smart grid, i sistemi di building automation vedono il proprio ruolo espandersi oltre i tradizionali limiti degli ambienti isolati che sono progettati per gestire, supervisionare ed ottimizzare. Da sistemi isolati all’interno di edifici residenziali o commerciali, stanno iniziando ad ottenere un ruolo importante su scala più ampia nell’ambito di scenari più complessi a livello urbano o a livello di infrastruttura. Esempi di questa tendenza possono essere le attuali sperimentazioni in varie città del mondo per automatizzare l’illuminazione pubblica, complessi residenziali diffusi (spesso denominati smart connected comunities) e microgrid locali generate dalla federazione di varie unità residenziali a formare cosidette virtual power plants. A causa di questo processo, ci sono aspettative crescenti circa il potenziale delle reti di automazione di introdurre funzionalità sofisticate da un parte ed efficienza energetica dall’altra, ed entrambi gli aspetti su vasta scala. Sfortunatamente questi due obiettivi sono per diversi motivi in conflitto ed è dunque inevitabile individuare un ragionevole compromesso di progettazione. Questa ricerca realizza una caratterizzazione delle attuali tecnologie di automazione per identificare i termini di tale compromesso, con un’attenzione maggiormente polarizzata sugli aspetti di efficienza energetica, analizzata seguendo un approccio olistico, affrontando diversi aspetti del problema. Indubbiamente, data la complessità del vasto scenario tecnologico delle future smart infrastructures, non c’è una finalità sistematica nel lavoro. Piuttosto si intende fornire un contributo alla conoscenza, dando priorità ad alcune sfide di ricerca che sono altresì spesso sottovalutate. Il Green networking, ovvero l’efficienza energetica nel funzionamento di rete, è una di tali sfide. L’attuale infrastruttura IT globale è costruita su attrezzature che collettivamente consumano 21.4 TWh/anno (Global e-Sustainability Initiative, 2010). Questo è dovuto alla scarsa consapevolezza del fatto che le specifiche dei protocolli di comunicazione hanno varie implicazioni sull’efficienza energetica e alla generale tendenza ad una progettazione ridondante e sovra-dimensionata per il caso peggiore. Questo problema potrebbe essere riscontrato anche nelle reti di automazione, specialmente data la tendenza di cui si discuteva sopra, e in tal caso, queste potrebbero introdurre un ulteriore carbon footprint, in aggiunta a quello della rete internet. In questa ricerca si intende dimensionare tale problema e proporre approcci alternativi agli attuali modelli di hardware e protocollo tipici delle tecnologie di automazione in commercio. Spostandosi dalla rete di controllo all’ambiente fisico, altro obiettivo di questo lavoro è la caratterizzazione di sistemi di gestione automatica dei plug loads, carichi elettrici altrimenti non gestiti da alcun impianto di building automation. Per tali sistemi verranno mostrati i limiti e le potenzialità, identificando potenziali problematiche di design e proponendo un approccio integrato di tali sistemi all’interno di sistemi più ampi di gestione dell’energia. Infine, il meccanismo introdotto nella parte di green networking è potenzialmente in grado di fornire informazioni in tempo reale circa il contesto controllato. Si tratta di un potenziale sfruttabile per sviluppare soluzioni di Demand Side Management, allo scopo di effettuare previsioni di picco e di carico. Questa analisi è attualmente in corso, attraverso una partnership con Enel Distribuzione. With the advent of smart infrastructures, collective expression used here to refer to novel concepts such as smart cities and smart grid, building automation and control networks are having their role expanded beyond the traditional boundaries of the isolated environments they are designed to manage, supervise and optimize. From being confined within residential or commercial buildings as islanded, self-contained systems, they are starting to gain an important role on a wider scale for more complex scenarios at urban or infrastructure level. Example of this ongoing process are current experimental setups in cities worldwide to automate urban street lighting, diffused residential facilities (also often addressed to as smart connected communities) and local micro-grids generated by the federation of several residential units into so-called virtual power plants. Given this underlying process, expectations are dramatically increasing about the potential of control networks to introduce sophisticated features on one side and energy efficiency on the other, and both on a wide scale. Unfortunately, these two objectives are, in several ways, conflicting, and impose to settle for reasonable trade-offs. This research work performs an assessment of current control and automation technologies to identify the terms of this trade-off with a stronger focus on energy efficiency which is analyzed following a holistic approach covering several aspects of the problem. Nevertheless, given the complexity of the wide technology scenario of future smart infrastructure, there isn’t a systematic intention in the work. Rather, this research will aim at providing valuable contribution to the knowledge in the field, prioritizing challenges within the whole picture that are often neglected. Green networking, that is energy efficiency of the very network operation, is one of these challenges. The current worldwide IT infrastructure is built upon networking equipment that collectively consume 21.4 TWh/year (Global e-Sustainability Initiative, 2010). This is the result of an overall unawareness of energy efficiency implications of communication protocols specifications and a tendency toward over-provisioning and redundancy in architecture design. As automation and control networks become global, they may be subject to the same issue and introduce an additional carbon footprint along with that of the internet. This research work performs an assessment of the dimension of this problem and proposes an alternative approach to current hardware and protocol design found in commercial building automation technologies. Shifting from the control network to the physical environment, another objective of this work is related to plug load management systems, which will be characterized as to their performance and limitations, highlighting potential design pitfalls and proposing an approach toward integrating these systems into more general energy management systems. Finally, the mechanism introduced above to increase networking energy efficiency also demonstrated a potential to provide real-time awareness about the context being managed. This potential is currently under investigation for its implications in performing basic load/peak forecasting to support demand side management architectures for the smart grid, through a partnership with the Italian electric utility

    On the Integration of Adaptive and Interactive Robotic Smart Spaces

    Get PDF
    © 2015 Mauro Dragone et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)Enabling robots to seamlessly operate as part of smart spaces is an important and extended challenge for robotics R&D and a key enabler for a range of advanced robotic applications, such as AmbientAssisted Living (AAL) and home automation. The integration of these technologies is currently being pursued from two largely distinct view-points: On the one hand, people-centred initiatives focus on improving the user’s acceptance by tackling human-robot interaction (HRI) issues, often adopting a social robotic approach, and by giving to the designer and - in a limited degree – to the final user(s), control on personalization and product customisation features. On the other hand, technologically-driven initiatives are building impersonal but intelligent systems that are able to pro-actively and autonomously adapt their operations to fit changing requirements and evolving users’ needs,but which largely ignore and do not leverage human-robot interaction and may thus lead to poor user experience and user acceptance. In order to inform the development of a new generation of smart robotic spaces, this paper analyses and compares different research strands with a view to proposing possible integrated solutions with both advanced HRI and online adaptation capabilities.Peer reviewe

    The Internet of Things and The Web of Things

    Get PDF
    International audienceThe Internet of Things is creating a new world, a quantifiable and measureable world, where people and businesses can manage their assets in better informed ways, and can make more timely and better informed decisions about what they want or need to do. This new con-nected world brings with it fundamental changes to society and to consumers. This special issue of ERCIM News thus focuses on various relevant aspects of the Internet of Things and the Web of Things

    Integration of heterogeneous data sources and automated reasoning in healthcare and domotic IoT systems

    Get PDF
    In recent years, IoT technology has radically transformed many crucial industrial and service sectors such as healthcare. The multi-facets heterogeneity of the devices and the collected information provides important opportunities to develop innovative systems and services. However, the ubiquitous presence of data silos and the poor semantic interoperability in the IoT landscape constitute a significant obstacle in the pursuit of this goal. Moreover, achieving actionable knowledge from the collected data requires IoT information sources to be analysed using appropriate artificial intelligence techniques such as automated reasoning. In this thesis work, Semantic Web technologies have been investigated as an approach to address both the data integration and reasoning aspect in modern IoT systems. In particular, the contributions presented in this thesis are the following: (1) the IoT Fitness Ontology, an OWL ontology that has been developed in order to overcome the issue of data silos and enable semantic interoperability in the IoT fitness domain; (2) a Linked Open Data web portal for collecting and sharing IoT health datasets with the research community; (3) a novel methodology for embedding knowledge in rule-defined IoT smart home scenarios; and (4) a knowledge-based IoT home automation system that supports a seamless integration of heterogeneous devices and data sources
    corecore