100 research outputs found

    A taxonomy of attacks and a survey of defence mechanisms for semantic social engineering attacks

    Get PDF
    Social engineering is used as an umbrella term for a broad spectrum of computer exploitations that employ a variety of attack vectors and strategies to psychologically manipulate a user. Semantic attacks are the specific type of social engineering attacks that bypass technical defences by actively manipulating object characteristics, such as platform or system applications, to deceive rather than directly attack the user. Commonly observed examples include obfuscated URLs, phishing emails, drive-by downloads, spoofed web- sites and scareware to name a few. This paper presents a taxonomy of semantic attacks, as well as a survey of applicable defences. By contrasting the threat landscape and the associated mitigation techniques in a single comparative matrix, we identify the areas where further research can be particularly beneficial

    Design and Evaluation of a Real-Time URL Spam Filtering Service

    Full text link

    Canary in Twitter Mine: Collecting Phishing Reports from Experts and Non-experts

    Full text link
    The rise in phishing attacks via e-mail and short message service (SMS) has not slowed down at all. The first thing we need to do to combat the ever-increasing number of phishing attacks is to collect and characterize more phishing cases that reach end users. Without understanding these characteristics, anti-phishing countermeasures cannot evolve. In this study, we propose an approach using Twitter as a new observation point to immediately collect and characterize phishing cases via e-mail and SMS that evade countermeasures and reach users. Specifically, we propose CrowdCanary, a system capable of structurally and accurately extracting phishing information (e.g., URLs and domains) from tweets about phishing by users who have actually discovered or encountered it. In our three months of live operation, CrowdCanary identified 35,432 phishing URLs out of 38,935 phishing reports. We confirmed that 31,960 (90.2%) of these phishing URLs were later detected by the anti-virus engine, demonstrating that CrowdCanary is superior to existing systems in both accuracy and volume of threat extraction. We also analyzed users who shared phishing threats by utilizing the extracted phishing URLs and categorized them into two distinct groups - namely, experts and non-experts. As a result, we found that CrowdCanary could collect information that is specifically included in non-expert reports, such as information shared only by the company brand name in the tweet, information about phishing attacks that we find only in the image of the tweet, and information about the landing page before the redirect

    Targeted Attacks: Redefining Spear Phishing and Business Email Compromise

    Full text link
    In today's digital world, cybercrime is responsible for significant damage to organizations, including financial losses, operational disruptions, or intellectual property theft. Cyberattacks often start with an email, the major means of corporate communication. Some rare, severely damaging email threats - known as spear phishing or Business Email Compromise - have emerged. However, the literature disagrees on their definition, impeding security vendors and researchers from mitigating targeted attacks. Therefore, we introduce targeted attacks. We describe targeted-attack-detection techniques as well as social-engineering methods used by fraudsters. Additionally, we present text-based attacks - with textual content as malicious payload - and compare non-targeted and targeted variants

    Backup To The Rescue: Automated Forensic Techniques For Advanced Website-Targeting Cyber Attacks

    Get PDF
    The last decade has seen a significant rise in non-technical users gaining a web presence, often via the easy-to-use functionalities of Content Management Systems (CMS). In fact, over 60% of the world’s websites run on CMSs. Unfortunately, this huge user population has made CMS-based websites a high-profile target for hackers. Worse still, the vast majority of the website hosting industry has shifted to a “backup and restore” model of security, which relies on error-prone AV scanners to prompt non-technical users to roll back to a pre-infection nightly snapshot. My cyber forensics research directly addresses this emergent problem by developing next-generation techniques for the investigation of advanced cyber crimes. Driven by economic incentives, attackers abuse the trust in this economy: selling malware on legitimate marketplaces, pirating popular website plugins, and infecting websites post-deployment. Furthermore, attackers are exploiting these websites at scale by carelessly dropping thousands of obfuscated and packed malicious files on the webserver. This is counter-intuitive since attackers are assumed to be stealthy. Despite the rise in web attacks, efficiently locating and accurately analyzing the malware dropped on compromised webservers has remained an open research challenge. This dissertation posits that the already collected webserver nightly backup snapshots contain all required information to enable automated and scalable detection of website compromises. This dissertation presents a web attack forensics framework that leverages program analysis to automatically understand the webserver’s nightly backup snapshots. This will enable the recovery of temporal phases of a webserver compromise and its origin within the website supply chain.Ph.D

    Reinforcing the weakest link in cyber security: securing systems and software against attacks targeting unwary users

    Get PDF
    Unwary computer users are often blamed as the weakest link on the security chain, for unknowingly facilitating incoming cyber attacks and jeopardizing the efforts to secure systems and networks. However, in my opinion, average users should not bear the blame because of their lack of expertise to predict the security consequence of every action they perform, such as browsing a webpage, downloading software to their computers, or installing an application to their mobile devices. My thesis work aims to secure software and systems by reducing or eliminating the chances where users’ mere action can unintentionally enable external exploits and attacks. In achieving this goal, I follow two complementary paths: (i) building runtime monitors to identify and interrupt the attack-triggering user actions; (ii) designing offline detectors for the software vulnerabilities that allow for such actions. To maximize the impact, I focus on securing software that either serve the largest number of users (e.g. web browsers) or experience the fastest user growth (e.g. smartphone apps), despite the platform distinctions. I have addressed the two dominant attacks through which most malicious software (a.k.a. malware) infections happen on the web: drive-by download and rogue websites. BLADE, an OS kernel extension, infers user intent through OS-level events and prevents the execution of download files that cannot be attributed to any user intent. Operating as a browser extension and identifying malicious post-search redirections, SURF protects search engine users from falling into the trap of poisoned search results that lead to fraudulent websites. In the infancy of security problems on mobile devices, I built Dalysis, the first comprehensive static program analysis framework for vetting Android apps in bytecode form. Based on Dalysis, CHEX detects the component hijacking vulnerability in large volumes of apps. My thesis as a whole explores, realizes, and evaluates a new perspective of securing software and system, which limits or avoids the unwanted security consequences caused by unwary users. It shows that, with the proposed approaches, software can be reasonably well protected against attacks targeting its unwary users. The knowledge and insights gained throughout the course of developing the thesis have advanced the community’s awareness of the threats and the increasing importance of considering unwary users when designing and securing systems. Each work included in this thesis has yielded at least one practical threat mitigation system. Evaluated by the large-scale real-world experiments, these systems have demonstrated the effectiveness at thwarting the security threats faced by most unwary users today. The threats addressed by this thesis have span multiple computing platforms, such as desktop operating systems, the Web, and smartphone devices, which highlight the broad impact of the thesis.Ph.D

    Protecting Networked Systems from Malware Threats

    Get PDF
    Currently, networks and networked systems are essential media for us to communicate with other people, access resources, and share information. Reading (or sending) emails, navigating web sites, and uploading pictures to social medias are common behaviors using networks. Besides these, networks and networked systems are used to store or access sensitive or private information. In addition, major economic activities, such as buying food and selling used cars, can also be operated with networks. Likewise, we live with networks and networked systems. As network usages are increasing and popular, people face the problems of net- work attacks. Attackers on the networks can steal people’s private information, mislead people to pay money for fake products, and threaten people, who operate online commercial sites, by bothering their services. There are much more diverse types of network attacks that torture many people using networks, and the situation is still serious. The proposal in this dissertation starts from the following two research questions: (i) what kind of network attack is prevalent and how we can investigate it and (ii) how we can protect our networks and networked systems from these attacks. Therefore, this dissertation spans two main areas to provide answers for each question. First, we analyze the behaviors and characteristics of large-scale bot infected hosts, and it provides us new findings of network malware and new insights that are useful to detect (or defeat) recent network threats. To do this, we investigate the characteristics of victims infected by recent popular botnet - Conficker, MegaD, and Srizbi. In addition, we propose a method to detect these bots by correlating network and host features. Second, we suggest new frameworks to make our networks secure based on the new network technology of Software Defined Networking (SDN). Currently, SDN technology is considered as a future major network trend, and it can dynamically program networks as we want. Our suggested frameworks for SDN can be used to devise network security applications easily, and we also provide an approach to make SDN technology secure
    • …
    corecore