2,521 research outputs found

    A Semantics-Based Approach to Design of Query Languages for Partial Information

    Get PDF
    Most of work on partial information in databases asks which operations of standard languages, like relational algebra, can still be performed correctly in the presence of nulls. In this paper a different point of view is advocated. We believe that the semantics of partiality must be clearly understood and it should give us new design principles for languages for databases with partial information. There are different sources of partial information, such as missing information and conflicts that occur when different databases are merged. In this paper, we develop a common semantic framework for them which can be applied in a context more general than the flat relational model. This ordered semantics, which is based on ideas used in the semantics of programming languages, cleanly intergrates all kinds of partial information and serves as a tool to establish connections between them. Analyzing properties of semantic domains of types suitable for representing partial information, we come up with operations that are naturally associated with those types, and we organize programming syntax around these operations. We show how the languages that we obtain can be used to ask typical queries about incomplete information in relational databases, and how they can express some previously proposed languages. Finally, we discuss a few related topics such as mixing traditional constraints with partial information and extending semantics and languages to accommodate bags and recursive types

    Provenance for Aggregate Queries

    Get PDF
    We study in this paper provenance information for queries with aggregation. Provenance information was studied in the context of various query languages that do not allow for aggregation, and recent work has suggested to capture provenance by annotating the different database tuples with elements of a commutative semiring and propagating the annotations through query evaluation. We show that aggregate queries pose novel challenges rendering this approach inapplicable. Consequently, we propose a new approach, where we annotate with provenance information not just tuples but also the individual values within tuples, using provenance to describe the values computation. We realize this approach in a concrete construction, first for "simple" queries where the aggregation operator is the last one applied, and then for arbitrary (positive) relational algebra queries with aggregation; the latter queries are shown to be more challenging in this context. Finally, we use aggregation to encode queries with difference, and study the semantics obtained for such queries on provenance annotated databases

    Dmodel and Dalgebra : a data model and algebra for office documents

    Get PDF
    This dissertation presents a data model (called D_model) and an algebra (called D_ algebra) for office documents. The data model adopts a very natural view of modeling office documents. Documents are grouped into classes; each class is characterized by a frame template , which describes the properties (or attributes) for the class of documents. A frame template is instantiated by providing it with values to form a frame instance which becomes the synopsis of the document of the class associated with the frame template. Different frame instances can be grouped into a folder. Therefore, a folder is a set of frame instances which need not be over the same frame template. The D_model is a dual model which describes documents using two hierarchies: a document type hierarchy which depicts the structural organization of the documents and a folder organization, which represents the user\u27s real-world document filing system. The document type hierarchy exploits structural commonalities between frame templates. Such a hierarchy helps classify various documents. The folder organization mimics the user\u27s real-world document filing system and provides the user with an intuitively clear view of the filing system. This facilitates document retrieval activities. The D_algebra includes a family of operators which together comprise the fundamental query language for the D_model. The algebra provides operators that can be applied to folders which contain frame instances of different types. It has more expressive power than the relational algebra. It extends the classical relational algebra by associating attributes with types, and supporting attribute inheritance. Aggregate operators which can be applied to different frame instances in a folder are also provided. The proposed algebra is used as a sound basis to express the semantics of a high level query language for a document processing system, called TEXPROS. In the model, frame instances can represent incomplete information. Null values of the form value at present unknown are used to denote missing information in some fields of the incomplete frame instances. This dissertation provides a proof-theoretic characterization of the data model and defines the semantics of the null values within the proof-theoretic paradigm

    Disjunctively incomplete information in relational databases: modeling and related issues

    Get PDF
    In this dissertation, the issues related to the information incompleteness in relational databases are explored. In general, this dissertation can be divided into two parts. The first part extends the relational natural join operator and the update operations of insertion and deletion to I-tables, an extended relational model representing inclusively indefinite and maybe information, in a semantically correct manner. Rudimentary or naive algorithms for computing natural joins on I-tables require an exponential number of pair-up operations and block accesses proportional to the size of I-tables due to the combinatorial nature of natural joins on I-tables. Thus, the problem becomes intractable for large I-tables. An algorithm for computing natural joins under the extended model which reduces the number of pair-up operations to a linear order of complexity in general and in the worst case to a polynomial order of complexity with respect to the size of I-tables is proposed in this dissertation. In addition, this algorithm also reduces the number of block accesses to a linear order of complexity with respect to the size of I-tables;The second part is related to the modeling aspect of incomplete databases. An extended relational model, called E-table, is proposed. E-table is capable of representing exclusively disjunctive information. That is, disjunctions of the form P[subscript]1\mid P[subscript]2\mid·s\mid P[subscript]n, where ǁ denotes a generalized logical exclusive or indicating that exactly one of the P[subscript]i\u27s can be true. The information content of an E-table is precisely defined and relational operators of selection, projection, difference, union, intersection, and cartisian product are extended to E-tables in a semantically correct manner. Conditions under which redundancies could arise due to the presence of exclusively disjunctive information are characterized and the procedure for resolving redundancies is presented;Finally, this dissertation is concluded with discussions on the directions for further research in the area of incomplete information modeling. In particular, a sketch of a relational model, IE-table (Inclusive and Exclusive table), for representing both inclusively and exclusively disjunctive information is provided

    Believe It or Not: Adding Belief Annotations to Databases

    Full text link
    We propose a database model that allows users to annotate data with belief statements. Our motivation comes from scientific database applications where a community of users is working together to assemble, revise, and curate a shared data repository. As the community accumulates knowledge and the database content evolves over time, it may contain conflicting information and members can disagree on the information it should store. For example, Alice may believe that a tuple should be in the database, whereas Bob disagrees. He may also insert the reason why he thinks Alice believes the tuple should be in the database, and explain what he thinks the correct tuple should be instead. We propose a formal model for Belief Databases that interprets users' annotations as belief statements. These annotations can refer both to the base data and to other annotations. We give a formal semantics based on a fragment of multi-agent epistemic logic and define a query language over belief databases. We then prove a key technical result, stating that every belief database can be encoded as a canonical Kripke structure. We use this structure to describe a relational representation of belief databases, and give an algorithm for translating queries over the belief database into standard relational queries. Finally, we report early experimental results with our prototype implementation on synthetic data.Comment: 17 pages, 10 figure

    Logic Programming as Constructivism

    Get PDF
    The features of logic programming that seem unconventional from the viewpoint of classical logic can be explained in terms of constructivistic logic. We motivate and propose a constructivistic proof theory of non-Horn logic programming. Then, we apply this formalization for establishing results of practical interest. First, we show that 'stratification can be motivated in a simple and intuitive way. Relying on similar motivations, we introduce the larger classes of 'loosely stratified' and 'constructively consistent' programs. Second, we give a formal basis for introducing quantifiers into queries and logic programs by defining 'constructively domain independent* formulas. Third, we extend the Generalized Magic Sets procedure to loosely stratified and constructively consistent programs, by relying on a 'conditional fixpoini procedure
    corecore