755 research outputs found

    Bernstein Polynomials for Radiative Transfer Computations

    Get PDF
    In this paper we propose using planar and spherical Bernstein polynomials over triangular domain for radiative transfer computations. In the planar domain, we propose using piecewise Bernstein basis functions and symmetric Gaussian quadrature formulas over triangular elements for high quality radiosity solution. In the spherical domain, we propose using piecewise Bernstein basis functions over a geodesic triangulation to represent the radiance function. The representation is intrinsic to the unit sphere, and may be efficiently stored, evaluated, and subdivided by the de Casteljau algorithm. The computation of other fundamental radiometric quantities such as vector irradiance and reflected radiance may be reduced to the integration of the piecewise Bernstein basis functions on the unit sphere. The key result of our work is a simple geometric integration algorithm based on adaptive domain subdivision for the Bernstein-Bézier polynomials over a geodesic triangle on the unit sphere

    Efficient representations of large radiosity matrices

    Get PDF
    The radiosity equation can be expressed as a linear system, where light interactions between patches of the scene are considered. Its resolution has been one of the main subjects in computer graphics, which has lead to the development of methods focused on different goals. For instance, in inverse lighting problems, it is convenient to solve the radiosity equation thousands of times for static geometries. Also, this calculation needs to consider many (or infinite) light bounces to achieve accurate global illumination results. Several methods have been developed to solve the linear system by finding approximations or other representations of the radiosity matrix, because the full storage of this matrix is memory demanding. Some examples are hierarchical radiosity, progressive refinement approaches, or wavelet radiosity. Even though these methods are memory efficient, they may become slow for many light bounces, due to their iterative nature. Recently, efficient methods have been developed for the direct resolution of the radiosity equation. In this case, the challenge is to reduce the memory requirements of the radiosity matrix, and its inverse. The main objective of this thesis is exploiting the properties of specific problems to reduce the memory requirements of the radiosity problem. Hereby, two types of problems are analyzed. The first problem is to solve radiosity for scenes with a high spatial coherence, such as it happens to some architectural models. The second involves scenes with a high occlusion factor between patches. For the high spatial coherence case, a novel and efficient error-bounded factorization method is presented. It is based on the use of multiple singular value decompositions along with a space filling curve, which allows to exploit spatial coherence. This technique accelerates the factorization of in-core matrices, and allows to work with out-of-core matrices passing only one time over them. In the experimental analysis, the presented method is applied to scenes up to 163K patches. After a precomputation stage, it is used to solve the radiosity equation for fixed geometries and infinite bounces, at interactive times. For the high occlusion problem, city models are used. In this case, the sparsity of the radiosity matrix is exploited. An approach for radiative exchange computation is proposed, where the inverse of the radiosity matrix is approximated. In this calculation, near-zero elements are removed, leading to a highly sparse result. This technique is applied to simulate daylight in urban environments composed by up to 140k patches.La ecuación de radiosidad tiene por objetivo el cálculo de la interacción de la luz con los elementos de la escena. Esta se puede expresar como un sistema lineal, cuya resolución ha derivado en el desarrollo de diversos métodos gráficos para satisfacer propósitos específicos. Por ejemplo, en problemas inversos de iluminación para geometrías estáticas, se debe resolver la ecuación de radiosidad miles de veces. Además, este cálculo debe considerar muchos (infinitos) rebotes de luz, si se quieren obtener resultados precisos de iluminación global. Entre los métodos desarrollados, se destacan aquellos que generan aproximaciones u otras representaciones de la matriz de radiosidad, debido a que su almacenamiento requiere grandes cantidades de memoria. Algunos ejemplos de estas técnicas son la radiosidad jerárquica, el refinamiento progresivo y la radiosidad basada en wavelets. Si bien estos métodos son eficientes en cuanto a memoria, pueden ser lentos cuando se requiere el cálculo de muchos rebotes de luz, debido a su naturaleza iterativa. Recientemente se han desarrollado métodos eficientes para la resolución directa de la ecuación de radiosidad, basados en el pre-cómputo de la inversa de la matriz de radiosidad. En estos casos, el desafío consiste en reducir los requerimientos de memoria y tiempo de ejecución para el cálculo de la matriz y de su inversa. El principal objetivo de la tesis consiste en explotar propiedades específicas de ciertos problemas de iluminación para reducir los requerimientos de memoria de la ecuación de radiosidad. En este contexto, se analizan dos casos diferentes. El primero consiste en hallar la radiosidad para escenas con alta coherencia espacial, tal como ocurre en algunos modelos arquitectónicos. El segundo involucra escenas con un elevado factor de oclusión entre parches. Para el caso de alta coherencia espacial, se presenta un nuevo método de factorización de matrices que es computacionalmente eficiente y que genera aproximaciones cuyo error es configurable. Está basado en el uso de múltiples descomposiciones en valores singulares (SVD) junto a una curva de recubrimiento espacial, lo que permite explotar la coherencia espacial. Esta técnica acelera la factorización de matrices que entran en memoria, y permite trabajar con matrices que no entran en memoria, recorriéndolas una única vez. En el análisis experimental, el método presentado es aplicado a escenas de hasta 163 mil parches. Luego de una etapa de precómputo, se logra resolver la ecuación de radiosidad en tiempos interactivos, para geométricas estáticas e infinitos rebotes. Para el problema de alta oclusión, se utilizan modelos de ciudades. En este caso, se aprovecha la baja densidad de la matriz de radiosidad, y se propone una técnica para el cálculo aproximado de su inversa. En este cálculo, los elementos cercanos a cero son eliminados. La técnica es aplicada a la simulación de la luz natural en ambientes urbanos compuestos por hasta 140 mil parches

    Numerical Solutions of the Radiosity Equation by the Galerkin Method for the Spherical Pyramid (Mars Project)

    Get PDF
    The Radiosity of a surface is the rate at which energy leaves that surface. It includes the energy emitted by a surface as well as the energy reflected. In this thesis, a spherical shaped interior space was designed on a spacecraft, which one day might land on Mars. The Radiosity model was used to determine the brightness inside the space. A global Galerkin method is used to solve the Radiosity Equation for several spherical shapes. This research is based on the study of the Radiosity Equation for occluded surfaces using the Collocation Method by Atkinson and Chein. The previous research was done on the Sphere, Perturbation of the Sphere, Ellipsoid and the Oval of Cassini. The convergence errors between true solutions and approximated numerical solutions for different reflectivity values and emissivity functions were presented

    Fast hierarchical low-rank view factor matrices for thermal irradiance on planetary surfaces

    Full text link
    We present an algorithm for compressing the radiosity view factor model commonly used in radiation heat transfer and computer graphics. We use a format inspired by the hierarchical off-diagonal low rank format, where elements are recursively partitioned using a quadtree or octree and blocks are compressed using a sparse singular value decomposition -- the hierarchical matrix is assembled using dynamic programming. The motivating application is time-dependent thermal modeling on vast planetary surfaces, with a focus on permanently shadowed craters which receive energy through indirect irradiance. In this setting, shape models are comprised of a large number of triangular facets which conform to a rough surface. At each time step, a quadratic number of triangle-to-triangle scattered fluxes must be summed; that is, as the sun moves through the sky, we must solve the same view factor system of equations for a potentially unlimited number of time-varying righthand sides. We first conduct numerical experiments with a synthetic spherical cap-shaped crater, where the equilibrium temperature is analytically available. We also test our implementation with triangle meshes of planetary surfaces derived from digital elevation models recovered by orbiting spacecrafts. Our results indicate that the compressed view factor matrix can be assembled in quadratic time, which is comparable to the time it takes to assemble the full view matrix itself. Memory requirements during assembly are reduced by a large factor. Finally, for a range of compression tolerances, the size of the compressed view factor matrix and the speed of the resulting matrix vector product both scale linearly (as opposed to quadratically for the full matrix), resulting in orders of magnitude savings in processing time and memory space.Comment: 21 pages, 10 figure

    Radiosity Integral Equation Model for an Interior Space Illumination Design: Mars Project

    Get PDF
    This research project is focused on finding the true solution of the exterior Dirichlet problem to determine the convergence results for the Spherical Quatrefoil using the Galerkin Method. A mathematical model, based on the Radiosity integral equation will be utilized to investigate the role of incoming light waves for different surfaces with various emissivity and reflectivity functions. Theoretical and computational details of the method will provide sufficient information for designing proper lighting of an interior space inside a habitat that can ultimately be used for future endeavors in Mars exploration
    • …
    corecore