2,309 research outputs found

    A Divide-and-Conquer Approach for Solving Interval Algebra Networks

    Get PDF
    Deciding consistency of constraint networks is a fundamental problem in qualitative spatial and temporal reasoning. In this paper we introduce a divide-and-conquer method that recursively partitions a given problem into smaller sub-problems in deciding consistency. We identify a key theoretical property of a qualitative calculus that ensures the soundness and completeness of this method, and show that it is satisfied by the Interval Algebra (IA) and the Point Algebra (PA). We develop a new encoding scheme for IA networks based on a combination of our divide-and-conquer method with an existing encoding of IA networks into SAT. We empirically show that our new encoding scheme scales to much larger problems and exhibits a consistent and significant improvement in efficiency over state-of-the-art solvers on the most difficult instances

    On statistics, computation and scalability

    Full text link
    How should statistical procedures be designed so as to be scalable computationally to the massive datasets that are increasingly the norm? When coupled with the requirement that an answer to an inferential question be delivered within a certain time budget, this question has significant repercussions for the field of statistics. With the goal of identifying "time-data tradeoffs," we investigate some of the statistical consequences of computational perspectives on scability, in particular divide-and-conquer methodology and hierarchies of convex relaxations.Comment: Published in at http://dx.doi.org/10.3150/12-BEJSP17 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Efficient Linear Programming for Dense CRFs

    Get PDF
    The fully connected conditional random field (CRF) with Gaussian pairwise potentials has proven popular and effective for multi-class semantic segmentation. While the energy of a dense CRF can be minimized accurately using a linear programming (LP) relaxation, the state-of-the-art algorithm is too slow to be useful in practice. To alleviate this deficiency, we introduce an efficient LP minimization algorithm for dense CRFs. To this end, we develop a proximal minimization framework, where the dual of each proximal problem is optimized via block coordinate descent. We show that each block of variables can be efficiently optimized. Specifically, for one block, the problem decomposes into significantly smaller subproblems, each of which is defined over a single pixel. For the other block, the problem is optimized via conditional gradient descent. This has two advantages: 1) the conditional gradient can be computed in a time linear in the number of pixels and labels; and 2) the optimal step size can be computed analytically. Our experiments on standard datasets provide compelling evidence that our approach outperforms all existing baselines including the previous LP based approach for dense CRFs.Comment: 24 pages, 10 figures and 4 table

    Solving the ME/ME/1 queue with state-space methods and the matrix sign function

    Get PDF
    Cataloged from PDF version of article.Matrix exponential (ME) distributions not only include the well-known class of phase-type distributions but also can be used to approximate more general distributions (e.g., deterministic, heavy-tailed, etc.). In this paper, a novel mathematical framework and a numerical algorithm are proposed to calculate the matrix exponential representation for the steady-state waiting time in an ME/ME/1 queue. Using state–space algebra, the waiting time calculation problem is shown to reduce to finding the solution of an ordinary differential equation in state–space form with order being the sum of the dimensionalities of the inter-arrival and service time distribution representations. A numerically efficient algorithm with quadratic convergence rates based on the matrix sign function iterations is proposed to find the boundary conditions of the differential equation. The overall algorithm does not involve any transform domain calculations such as root finding or polynomial factorization, which are known to have potential numerical stability problems. Numerical examples are provided to demonstrate the effectiveness of the proposed approach. © 2004 Elsevier B.V. All rights reserved

    Open-ended evolution to discover analogue circuits for beyond conventional applications

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s10710-012-9163-8. Copyright @ Springer 2012.Analogue circuits synthesised by means of open-ended evolutionary algorithms often have unconventional designs. However, these circuits are typically highly compact, and the general nature of the evolutionary search methodology allows such designs to be used in many applications. Previous work on the evolutionary design of analogue circuits has focused on circuits that lie well within analogue application domain. In contrast, our paper considers the evolution of analogue circuits that are usually synthesised in digital logic. We have developed four computational circuits, two voltage distributor circuits and a time interval metre circuit. The approach, despite its simplicity, succeeds over the design tasks owing to the employment of substructure reuse and incremental evolution. Our findings expand the range of applications that are considered suitable for evolutionary electronics

    Synthesis of time-to-amplitude converter by mean coevolution with adaptive parameters

    Get PDF
    Copyright © 2011 the authors and Scientific Research Publishing Inc. This work is licensed under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/)The challenging task to synthesize automatically a time-to-amplitude converter, which unites by its functionality several digital circuits, has been successfully solved with the help of a novel methodology. The proposed approach is based on a paradigm according to which the substructures are regarded as additional mutation types and when ranged with other mutations form a new adaptive individual-level mutation technique. This mutation approach led to the discovery of an original coevolution strategy that is characterized by very low selection rates. Parallel island-model evolution has been running in a hybrid competitive-cooperative interaction throughout two incremental stages. The adaptive population size is applied for synchronization of the parallel evolutions
    • …
    corecore