185 research outputs found

    Outlier detection using distributionally robust optimization under the Wasserstein metric

    Full text link
    We present a Distributionally Robust Optimization (DRO) approach to outlier detection in a linear regression setting, where the closeness of probability distributions is measured using the Wasserstein metric. Training samples contaminated with outliers skew the regression plane computed by least squares and thus impede outlier detection. Classical approaches, such as robust regression, remedy this problem by downweighting the contribution of atypical data points. In contrast, our Wasserstein DRO approach hedges against a family of distributions that are close to the empirical distribution. We show that the resulting formulation encompasses a class of models, which include the regularized Least Absolute Deviation (LAD) as a special case. We provide new insights into the regularization term and give guidance on the selection of the regularization coefficient from the standpoint of a confidence region. We establish two types of performance guarantees for the solution to our formulation under mild conditions. One is related to its out-of-sample behavior, and the other concerns the discrepancy between the estimated and true regression planes. Extensive numerical results demonstrate the superiority of our approach to both robust regression and the regularized LAD in terms of estimation accuracy and outlier detection rates

    Polyhedral Predictive Regions For Power System Applications

    Get PDF
    Despite substantial improvement in the development of forecasting approaches, conditional and dynamic uncertainty estimates ought to be accommodated in decision-making in power system operation and market, in order to yield either cost-optimal decisions in expectation, or decision with probabilistic guarantees. The representation of uncertainty serves as an interface between forecasting and decision-making problems, with different approaches handling various objects and their parameterization as input. Following substantial developments based on scenario-based stochastic methods, robust and chance-constrained optimization approaches have gained increasing attention. These often rely on polyhedra as a representation of the convex envelope of uncertainty. In the work, we aim to bridge the gap between the probabilistic forecasting literature and such optimization approaches by generating forecasts in the form of polyhedra with probabilistic guarantees. For that, we see polyhedra as parameterized objects under alternative definitions (under L1L_1 and L∞L_\infty norms), the parameters of which may be modelled and predicted. We additionally discuss assessing the predictive skill of such multivariate probabilistic forecasts. An application and related empirical investigation results allow us to verify probabilistic calibration and predictive skills of our polyhedra.Comment: 8 page

    Rank-based Decomposable Losses in Machine Learning: A Survey

    Full text link
    Recent works have revealed an essential paradigm in designing loss functions that differentiate individual losses vs. aggregate losses. The individual loss measures the quality of the model on a sample, while the aggregate loss combines individual losses/scores over each training sample. Both have a common procedure that aggregates a set of individual values to a single numerical value. The ranking order reflects the most fundamental relation among individual values in designing losses. In addition, decomposability, in which a loss can be decomposed into an ensemble of individual terms, becomes a significant property of organizing losses/scores. This survey provides a systematic and comprehensive review of rank-based decomposable losses in machine learning. Specifically, we provide a new taxonomy of loss functions that follows the perspectives of aggregate loss and individual loss. We identify the aggregator to form such losses, which are examples of set functions. We organize the rank-based decomposable losses into eight categories. Following these categories, we review the literature on rank-based aggregate losses and rank-based individual losses. We describe general formulas for these losses and connect them with existing research topics. We also suggest future research directions spanning unexplored, remaining, and emerging issues in rank-based decomposable losses.Comment: Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI

    Data Consistency for Data-Driven Smart Energy Assessment

    Get PDF
    In the smart grid era, the number of data available for different applications has increased considerably. However, data could not perfectly represent the phenomenon or process under analysis, so their usability requires a preliminary validation carried out by experts of the specific domain. The process of data gathering and transmission over the communication channels has to be verified to ensure that data are provided in a useful format, and that no external effect has impacted on the correct data to be received. Consistency of the data coming from different sources (in terms of timings and data resolution) has to be ensured and managed appropriately. Suitable procedures are needed for transforming data into knowledge in an effective way. This contribution addresses the previous aspects by highlighting a number of potential issues and the solutions in place in different power and energy system, including the generation, grid and user sides. Recent references, as well as selected historical references, are listed to support the illustration of the conceptual aspects

    Reweighted Mixup for Subpopulation Shift

    Full text link
    Subpopulation shift exists widely in many real-world applications, which refers to the training and test distributions that contain the same subpopulation groups but with different subpopulation proportions. Ignoring subpopulation shifts may lead to significant performance degradation and fairness concerns. Importance reweighting is a classical and effective way to handle the subpopulation shift. However, recent studies have recognized that most of these approaches fail to improve the performance especially when applied to over-parameterized neural networks which are capable of fitting any training samples. In this work, we propose a simple yet practical framework, called reweighted mixup (RMIX), to mitigate the overfitting issue in over-parameterized models by conducting importance weighting on the ''mixed'' samples. Benefiting from leveraging reweighting in mixup, RMIX allows the model to explore the vicinal space of minority samples more, thereby obtaining more robust model against subpopulation shift. When the subpopulation memberships are unknown, the training-trajectories-based uncertainty estimation is equipped in the proposed RMIX to flexibly characterize the subpopulation distribution. We also provide insightful theoretical analysis to verify that RMIX achieves better generalization bounds over prior works. Further, we conduct extensive empirical studies across a wide range of tasks to validate the effectiveness of the proposed method.Comment: Journal version of arXiv:2209.0892
    • …
    corecore