148 research outputs found

    Matching mechanisms for two-sided shared mobility systems

    Get PDF
    Shared mobility systems have gained significant attention in the last few decades due, in large part, to the rise of the service-based sharing economy. In this thesis, we study the matching mechanism design of two-sided shared mobility systems which include two distinct groups of users. Typical examples of such systems include ride-hailing platforms like Uber, ride-pooling platforms like Lyft Line, and community ride-sharing platforms like Zimride. These two-sided shared mobility systems can be modeled as two-sided markets, which need to be designed to efficiently allocate resources from the supply side of the market to the demand side of the market. Given its two-sided nature, the resource allocation problem in a two-sided market is essentially a matching problem. The matching problems in two-sided markets present themselves in decentralized and dynamic environments. In a decentralized environment, participants from both sides possess asymmetric information and strategic behaviors. They may behave strategically to advance their own benefits rather than the system-level performance. Participants may also have their private matching preferences, which they may be reluctant to share due to privacy and ethical concerns. In addition, the dynamic nature of the shared mobility systems brings in contingencies to the matching problems in the forms of, for example, the uncertainty of customer demand and resource availability. In this thesis, we propose matching mechanisms for shared mobility systems. Particularly, we address the challenges derived from the decentralized and dynamic environment of the two-sided shared mobility systems. The thesis is a compilation of four published or submitted journal papers. In these papers, we propose four matching mechanisms tackling various aspects of the matching mechanism design. We first present a price-based iterative double auction for dealing with asymmetric information between the two sides of the market and the strategic behaviors of self-interested agents. For settings where prices are predetermined by the market or cannot be changed frequently due to regulatory reasons, we propose a voting-based matching mechanism design. The mechanism is a distributed implementation of the simulated annealing meta-heuristic, which does not rely on a pricing scheme and preserves user privacy. In addition to decentralized matching mechanisms, we also propose dynamic matching mechanisms. Specifically, we propose a dispatch framework that integrates batched matching with data-driven proactive guidance for a Uber-like ride-hailing system to deal with the uncertainty of riders’ demand. By considering both drivers’ ride acceptance uncertainty and strategic behaviors, we finally propose a pricing mechanism that computes personalized payments for drivers to improve drivers' average acceptance rate in a ride-hailing system

    Mathematical optimization techniques for demand management in smart grids

    Get PDF
    The electricity supply industry has been facing significant challenges in terms of meeting the projected demand for energy, environmental issues, security, reliability and integration of renewable energy. Currently, most of the power grids are based on many decades old vertical hierarchical infrastructures where the electric power flows in one direction from the power generators to the consumer side and the grid monitoring information is handled only at the operation side. It is generally believed that a fundamental evolution in electric power generation and supply system is required to make the grids more reliable, secure and efficient. This is generally recognised as the development of smart grids. Demand management is the key to the operational efficiency and reliability of smart grids. Facilitated by the two-way information flow and various optimization mechanisms, operators benefit from real time dynamic load monitoring and control while consumers benefit from optimised use of energy. In this thesis, various mathematical optimization techniques and game theoretic frameworks have been proposed for demand management in order to achieve efficient home energy consumption scheduling and optimal electric vehicle (EV) charging. A consumption scheduling technique is proposed to minimise the peak consumption load. The proposed technique is able to schedule the optimal operation time for appliances according to the power consumption patterns of the individual appliances. A game theoretic consumption optimization framework is proposed to manage the scheduling of appliances of multiple residential consumers in a decentralised manner, with the aim of achieving minimum cost of energy for consumers. The optimization incorporates integration of locally generated and stored renewable energy in order to minimise dependency on conventional energy. In addition to the appliance scheduling, a mean field game theoretic optimization framework is proposed for electric vehicles to manage their charging. In particular, the optimization considers a charging station where a large number of EVs are charged simultaneously during a flexible period of time. The proposed technique provides the EVs an optimal charging strategy in order to minimise the cost of charging. The performances of all these new proposed techniques have been demonstrated using Matlab based simulation studies

    Load Flexibility for Price based Demand Response

    Get PDF
    We propose a framework to utilize load flexibility to be operated in a window of flexibility considering the price variations. The consumer inputs the window of flexibility, the period of operation and nominal power consumption trajectory governed by the load. We create a load shift matrix and minimize the cost of consumption of operating the device. For some devices such as electric vehicle, the nominal power consumption trajectory can be altered provided the total energy consumed in the window of flexibility is matched. The new power consumption trajectory can be found using profile steering. We also show that under the price taker assumption, the optimal control of aggregate of flexible loads is equivalent to optimally controlling each of the loads individually. Using real data from Pecan Street [1] and ERCOT wholesale market price [2] we conduct numerical experiment showing the efficacy of the proposed mechanism of performing price based demand response (DR)

    Enhancement of Charging Resource Utilization of Electric Vehicle Fast Charging Station with Heterogeneous EV Users

    Get PDF
    This thesis presents innovative charging resource allocation and coordination strategies that maximize the limited charging resources at FCS with heterogeneous EV users. It allows opportunistic EV users (OEVs) to exploit available charging resources with dynamic event-driven charging resource allocation and coordination strategies apart from primary EV users (PEVs) (registered or scheduled EV users). Moreover, developed strategies focus on the limited charging resources that are allocated for primary/ registered EV users (PEVs) of the FCS who access the FCS with specific privileges according to prior agreements. But the available resources are not optimally utilized due to various uncertainties associated with the EV charging process such as EV mobility-related uncertainties, EVSE failures, energy price uncertainties, etc. Developed strategies consider that idle chargers and vacant space for EVs at the FCS is an opportunity for further utilizing them with OEVs using innovative charging resource coordination strategies. This thesis develops an FCS-centric performance assessment framework that evaluates the performance of developed strategies in terms of charging resource utilization, charging completion and the quality of service (QoS) aspects of EV users. To evaluate QoS of EV charging process, various parameters such as EV blockage, charging process preemptage, mean waiting time, mean charging time, availability of FCS, charging reliability, etc are derived and analyzed. In addition, the developed innovative charging resource allocation and coordination strategies with resource aggregation and demand elasticity further enhance the charging resource utilization while providing a high QoS in EV charging for both PEVs and OEVs.publishedVersio

    13th international conference on design & decision support systems in architecture and urban planning, June 27-28, 2016, Eindhoven

    Get PDF
    • …
    corecore