2,528 research outputs found

    Topics in Electromobility and Related Applications

    Get PDF
    In this thesis, we mainly discuss four topics on Electric Vehicles (EVs) in the context of smart grid and smart transportation systems. The first topic focuses on investigating the impacts of different EV charging strategies on the grid. In Chapter 3, we present a mathematical framework for formulating different EV charging problems and investigate a range of typical EV charging strategies with respect to different actors in the power system. Using this framework, we compare the performances of all charging strategies on a common power system simulation testbed, highlighting in each case positive and negative characteristics. The second topic is concerned with the applications of EVs with Vehicle-to-Grid (V2G) capabilities. In Chapter 4, we apply certain ideas from cooperative control techniques to two V2G applications in different scenarios. In the first scenario, we harness the power of V2G technologies to reduce current imbalance in a three-phase power network. In the second scenario, we design a fair V2G programme to optimally determine the power dispatch from EVs in a microgrid scenario. The effectiveness of the proposed algorithms are verified through a variety of simulation studies. The third topic discusses an optimal distributed energy management strategy for power generation in a microgrid scenario. In Chapter 5, we adapt the synchronised version of the Additive-Increase-Multiplicative-Decrease (AIMD) algorithms to minimise a cost utility function related to the power generation costs of distributed resources. We investigate the AIMD based strategy through simulation studies and we illustrate that the performance of the proposed method is very close to the full communication centralised case. Finally, we show that this idea can be easily extended to another application including thermal balancing requirements. The last topic focuses on a new design of the Speed Advisory System (SAS) for optimising both conventional and electric vehicles networks. In Chapter 6, we demonstrate that, by using simple ideas, one can design an effective SAS for electric vehicles to minimise group energy consumption in a distributed and privacy-aware manner; Matlab simulation are give to illustrate the effectiveness of this approach. Further, we extend this idea to conventional vehicles in Chapter 7 and we show that by using some of the ideas introduced in Chapter 6, group emissions of conventional vehicles can also be minimised under the same SAS framework. SUMO simulation and Hardware-In-the-Loop (HIL) tests involving real vehicles are given to illustrate user acceptability and ease of deployment. Finally, note that many applications in this thesis are based on the theories of a class of nonlinear iterative feedback systems. For completeness, we present a rigorous proof on global convergence of consensus of such systems in Chapter 2

    An intelligent multi-speed advisory system using improved whale optimisation algorithm

    Get PDF
    An intelligent speed advisory system can be used to recommend speed for vehicles travelling in a given road network in cities. In this paper, we extend our previous work where a distributed speed advisory system has been devised to recommend an optimal consensus speed for a fleet of Internal Combustion Engine Vehicles (ICEVs) in a highway scenario. In particular, we propose a novel optimisation framework where the exact format of each vehicle’s cost function can be implicit, and our algorithm can be used to recommend multiple consensus speeds for vehicles travelling on different lanes in an urban highway scenario. Our studies show that the proposed scheme based on an improved whale optimisation algorithm can effectively reduce CO2 emission generated from ICEVs while providing different recommended speed options for groups of vehicles

    Recent Advances in Graph-based Machine Learning for Applications in Smart Urban Transportation Systems

    Full text link
    The Intelligent Transportation System (ITS) is an important part of modern transportation infrastructure, employing a combination of communication technology, information processing and control systems to manage transportation networks. This integration of various components such as roads, vehicles, and communication systems, is expected to improve efficiency and safety by providing better information, services, and coordination of transportation modes. In recent years, graph-based machine learning has become an increasingly important research focus in the field of ITS aiming at the development of complex, data-driven solutions to address various ITS-related challenges. This chapter presents background information on the key technical challenges for ITS design, along with a review of research methods ranging from classic statistical approaches to modern machine learning and deep learning-based approaches. Specifically, we provide an in-depth review of graph-based machine learning methods, including basic concepts of graphs, graph data representation, graph neural network architectures and their relation to ITS applications. Additionally, two case studies of graph-based ITS applications proposed in our recent work are presented in detail to demonstrate the potential of graph-based machine learning in the ITS domain

    Automotive Intelligence Embedded in Electric Connected Autonomous and Shared Vehicles Technology for Sustainable Green Mobility

    Get PDF
    The automotive sector digitalization accelerates the technology convergence of perception, computing processing, connectivity, propulsion, and data fusion for electric connected autonomous and shared (ECAS) vehicles. This brings cutting-edge computing paradigms with embedded cognitive capabilities into vehicle domains and data infrastructure to provide holistic intrinsic and extrinsic intelligence for new mobility applications. Digital technologies are a significant enabler in achieving the sustainability goals of the green transformation of the mobility and transportation sectors. Innovation occurs predominantly in ECAS vehicles’ architecture, operations, intelligent functions, and automotive digital infrastructure. The traditional ownership model is moving toward multimodal and shared mobility services. The ECAS vehicle’s technology allows for the development of virtual automotive functions that run on shared hardware platforms with data unlocking value, and for introducing new, shared computing-based automotive features. Facilitating vehicle automation, vehicle electrification, vehicle-to-everything (V2X) communication is accomplished by the convergence of artificial intelligence (AI), cellular/wireless connectivity, edge computing, the Internet of things (IoT), the Internet of intelligent things (IoIT), digital twins (DTs), virtual/augmented reality (VR/AR) and distributed ledger technologies (DLTs). Vehicles become more intelligent, connected, functioning as edge micro servers on wheels, powered by sensors/actuators, hardware (HW), software (SW) and smart virtual functions that are integrated into the digital infrastructure. Electrification, automation, connectivity, digitalization, decarbonization, decentralization, and standardization are the main drivers that unlock intelligent vehicles' potential for sustainable green mobility applications. ECAS vehicles act as autonomous agents using swarm intelligence to communicate and exchange information, either directly or indirectly, with each other and the infrastructure, accessing independent services such as energy, high-definition maps, routes, infrastructure information, traffic lights, tolls, parking (micropayments), and finding emergent/intelligent solutions. The article gives an overview of the advances in AI technologies and applications to realize intelligent functions and optimize vehicle performance, control, and decision-making for future ECAS vehicles to support the acceleration of deployment in various mobility scenarios. ECAS vehicles, systems, sub-systems, and components are subjected to stringent regulatory frameworks, which set rigorous requirements for autonomous vehicles. An in-depth assessment of existing standards, regulations, and laws, including a thorough gap analysis, is required. Global guidelines must be provided on how to fulfill the requirements. ECAS vehicle technology trustworthiness, including AI-based HW/SW and algorithms, is necessary for developing ECAS systems across the entire automotive ecosystem. The safety and transparency of AI-based technology and the explainability of the purpose, use, benefits, and limitations of AI systems are critical for fulfilling trustworthiness requirements. The article presents ECAS vehicles’ evolution toward domain controller, zonal vehicle, and federated vehicle/edge/cloud-centric based on distributed intelligence in the vehicle and infrastructure level architectures and the role of AI techniques and methods to implement the different autonomous driving and optimization functions for sustainable green mobility.publishedVersio

    Internet of Vehicles: Motivation, Layered Architecture, Network Model, Challenges, and Future Aspects

    Get PDF
    © 2013 IEEE. Internet of Things is smartly changing various existing research areas into new themes, including smart health, smart home, smart industry, and smart transport. Relying on the basis of 'smart transport,' Internet of Vehicles (IoV) is evolving as a new theme of research and development from vehicular ad hoc networks (VANETs). This paper presents a comprehensive framework of IoV with emphasis on layered architecture, protocol stack, network model, challenges, and future aspects. Specifically, following the background on the evolution of VANETs and motivation on IoV an overview of IoV is presented as the heterogeneous vehicular networks. The IoV includes five types of vehicular communications, namely, vehicle-to-vehicle, vehicle-to-roadside, vehicle-to-infrastructure of cellular networks, vehicle-to-personal devices, and vehicle-to-sensors. A five layered architecture of IoV is proposed considering functionalities and representations of each layer. A protocol stack for the layered architecture is structured considering management, operational, and security planes. A network model of IoV is proposed based on the three network elements, including cloud, connection, and client. The benefits of the design and development of IoV are highlighted by performing a qualitative comparison between IoV and VANETs. Finally, the challenges ahead for realizing IoV are discussed and future aspects of IoV are envisioned
    • 

    corecore