1,185 research outputs found

    A distributed wheel sieve algorithm using Scheduling by Multiple Edge Reversal

    No full text
    Number of pages: 12This paper presents a new distributed approach for generating all prime numbers in a given interval of integers. From Eratosthenes, who elaborated the first prime sieve (more than 2000 years ago), to the current generation of parallel computers, which have permitted to reach larger bounds on the interval or to obtain previous results in a shorter time, prime numbers generation still represents an attractive domain of research and plays a central role in cryptography. We propose a fully distributed algorithm for finding all primes in the interval [2,n][2\ldots, n], based on the \emph{wheel sieve} and the SMER (\emph{Scheduling by Multiple Edge Reversal}) multigraph dynamics. Given a multigraph M\mathcal{M} of arbitrary topology, having NN nodes, an SMER-driven system is defined by the number of directed edges (arcs) between any two nodes of M\mathcal{M}, and by the global period length of all ''arc reversals'' in M\mathcal{M}. The new prime number generation method inherits the distributed and parallel nature of SMER and requires at most n+nn + \lfloor \sqrt{n}\rfloor time steps

    A distributed prime sieving algorithm based on SMER

    No full text
    Rapport interne LIPNIn this paper, we propose a fully distributed algorithm for finding all primes in an given interval [2..n][2..n] (or (L,R)(L,R), more generally), based on the SMER (\textit{Scheduling by Multiple Edge Reversal}) multigraph dynamics. Given a multigraph M\mathcal{M} of arbitrary topology, having NN nodes, the SMER-driven system is defined by the numberof directed edges (arcs) between any two nodes of M\mathcal{M}, and by the global period length of all ``arc reversals'' in M\mathcal{M}. In the domain of prime numbers generation, such a graph method shows quite elegant, and it also yields a totally new kind of distributed prime sieving algorithms of an entirely original design. The maximum number of steps required by the algorithm is at most n+nn + \sqrt{n}. Although far beyond the O(n/loglogn)O(n/\log\log n) steps required by the improved sequential ``wheel sieve'' algorithms, our SMER-based algorithm is fully distributed and of linear (step) complexity. The message complexity of the algorithm is at most nΔN+nΔNn\Delta_N + \sqrt{n} \Delta_N, where ΔN\Delta_N denotes the maximum ``multidegree'' of the arbitrary multigraph M\mathcal{M}, and the space required per process is linear

    Natural Stone Waste Powders Applied to SCC Mix Design

    Get PDF
    In order to comply with current trends concerning sustainability, saving of primary materials and energy\ud savings, this paper addresses Eco-concrete. The major focus thereby is on the increased efficiency of cement\ud use. Applying a new mix design method for concrete, cement contents can be decreased and partially be substituted\ud by other fine powders, preferentially by waste powders which have no mass application so far. This\ud paper is giving examples of successfully introduced waste powders and characterizes the concretes produced\ud with these powders. These innovative, low cement concrete types obtain medium strength and exhibit furthermore\ud self-compacting abilities. This paper additionally highlights possibilities for the direct use of natural\ud stone sludges or filter cakes. A new grading based design method, developed in the authors’ research\ud group, enables the efficient use of all materials available. The method is applicable to self-compacting concretes,\ud earth-moist concretes and conventionally vibrated concretes

    Improvement of Low Traffic Volume Gravel Roads in Nebraska

    Get PDF
    In the state of Nebraska, over one-third of roadways are unpaved, and consequently require a significant amount of financial and operational resources to maintain their operation. Undesired behavior of surface gravel aggregates and the road surfaces can include rutting, corrugation, and ponding that may lead to reduced driving safety, speed or network efficiency, and fuel economy. This study evaluates the parameters that characterize the performance and condition of gravel roads overtime period related to various aggregate mix designs. The parameters, including width, slope, and crown profiles, are examples of performance criteria. As remote sensing technologies have advanced in the recent decade, various techniques have been introduced to collect high quality, accurate, and dense data efficiently that can be used for roadway performance assessments. Within this study, two remote sensing platforms, including an unpiloted aerial system (UAS) and ground-based lidar scanner, were used to collect point cloud data of selected roadway sites with various mix design constituents and further processed for digital assessments. Within the assessment process, statistical parameters such as standard deviation, mean value, and coefficient of variance are calculated for the extracted crown profiles. In addition, the study demonstrated that the point clouds obtained from both lidar scanners and UAS derived SfM can be used to characterize the roadway geometry accurately and extract critical information accurately

    Agricultural Structures and Mechanization

    Get PDF
    In our globalized world, the need to produce quality and safe food has increased exponentially in recent decades to meet the growing demands of the world population. This expectation is being met by acting at multiple levels, but mainly through the introduction of new technologies in the agricultural and agri-food sectors. In this context, agricultural, livestock, agro-industrial buildings, and agrarian infrastructure are being built on the basis of a sophisticated design that integrates environmental, landscape, and occupational safety, new construction materials, new facilities, and mechanization with state-of-the-art automatic systems, using calculation models and computer programs. It is necessary to promote research and dissemination of results in the field of mechanization and agricultural structures, specifically with regard to farm building and rural landscape, land and water use and environment, power and machinery, information systems and precision farming, processing and post-harvest technology and logistics, energy and non-food production technology, systems engineering and management, and fruit and vegetable cultivation systems. This Special Issue focuses on the role that mechanization and agricultural structures play in the production of high-quality food and continuously over time. For this reason, it publishes highly interdisciplinary quality studies from disparate research fields including agriculture, engineering design, calculation and modeling, landscaping, environmentalism, and even ergonomics and occupational risk prevention

    Optimización del diseño estructural de pavimentos asfálticos para calles y carreteras

    Get PDF
    gráficos, tablasThe construction of asphalt pavements in streets and highways is an activity that requires optimizing the consumption of significant economic and natural resources. Pavement design optimization meets contradictory objectives according to the availability of resources and users’ needs. This dissertation explores the application of metaheuristics to optimize the design of asphalt pavements using an incremental design based on the prediction of damage and vehicle operating costs (VOC). The costs are proportional to energy and resource consumption and polluting emissions. The evolution of asphalt pavement design and metaheuristic optimization techniques on this topic were reviewed. Four computer programs were developed: (1) UNLEA, a program for the structural analysis of multilayer systems. (2) PSO-UNLEA, a program that uses particle swarm optimization metaheuristic (PSO) for the backcalculation of pavement moduli. (3) UNPAVE, an incremental pavement design program based on the equations of the North American MEPDG and includes the computation of vehicle operating costs based on IRI. (4) PSO-PAVE, a PSO program to search for thicknesses that optimize the design considering construction and vehicle operating costs. The case studies show that the backcalculation and structural design of pavements can be optimized by PSO considering restrictions in the thickness and the selection of materials. Future developments should reduce the computational cost and calibrate the pavement performance and VOC models. (Texto tomado de la fuente)La construcción de pavimentos asfálticos en calles y carreteras es una actividad que requiere la optimización del consumo de cuantiosos recursos económicos y naturales. La optimización del diseño de pavimentos atiende objetivos contradictorios de acuerdo con la disponibilidad de recursos y las necesidades de los usuarios. Este trabajo explora el empleo de metaheurísticas para optimizar el diseño de pavimentos asfálticos empleando el diseño incremental basado en la predicción del deterioro y los costos de operación vehicular (COV). Los costos son proporcionales al consumo energético y de recursos y las emisiones contaminantes. Se revisó la evolución del diseño de pavimentos asfálticos y el desarrollo de técnicas metaheurísticas de optimización en este tema. Se desarrollaron cuatro programas de computador: (1) UNLEA, programa para el análisis estructural de sistemas multicapa. (2) PSO-UNLEA, programa que emplea la metaheurística de optimización con enjambre de partículas (PSO) para el cálculo inverso de módulos de pavimentos. (3) UNPAVE, programa de diseño incremental de pavimentos basado en las ecuaciones de la MEPDG norteamericana, y el cálculo de costos de construcción y operación vehicular basados en el IRI. (4) PSO-PAVE, programa que emplea la PSO en la búsqueda de espesores que permitan optimizar el diseño considerando los costos de construcción y de operación vehicular. Los estudios de caso muestran que el cálculo inverso y el diseño estructural de pavimentos pueden optimizarse mediante PSO considerando restricciones en los espesores y la selección de materiales. Los desarrollos futuros deben enfocarse en reducir el costo computacional y calibrar los modelos de deterioro y COV.DoctoradoDoctor en Ingeniería - Ingeniería AutomáticaDiseño incremental de pavimentosEléctrica, Electrónica, Automatización Y Telecomunicacione
    corecore